Tuesday, March 17, 2015

Honey offers new approach to fighting antibiotic resistance ............





In continuation of my update on Honey..

Honey, that delectable condiment for breads and fruits, could be one sweet solution to the serious, ever-growing problem of bacterial resistance to antibiotics, researchers said in Dallas* today. Medical professionals sometimes use honey successfully as a topical dressing, but it could play a larger role in fighting infections, the researchers predicted.

"The unique property of honey lies in its ability to fight infection on multiple levels, making it more difficult for bacteria to develop resistance," said study leader Susan M. Meschwitz, Ph.D. That is, it uses a combination of weapons, including hydrogen peroxide, acidity, osmotic effect, high sugar concentration and polyphenols -- all of which actively kill bacterial cells, she explained. The osmotic effect, which is the result of the high sugar concentration in honey, draws water from the bacterial cells, dehydrating and killing them.

In addition, several studies have shown that honey inhibits the formation of biofilms, or communities of slimy disease-causing bacteria, she said. "Honey may also disrupt quorum sensing, which weakens bacterial virulence, rendering the bacteria more susceptible to conventional antibiotics," Meschwitz said. Quorum sensing is the way bacteria communicate with one another, and may be involved in the formation of biofilms. In certain bacteria, this communication system also controls the release of toxins, which affects the bacteria's pathogenicity, or their ability to cause disease.

Meschwitz, who is with Salve Regina University in Newport, R.I., said another advantage of honey is that unlike conventional antibiotics, it doesn't target the essential growth processes of bacteria. The problem with this type of targeting, which is the basis of conventional antibiotics, is that it results in the bacteria building up resistance to the drugs.

Honey is effective because it is filled with healthful polyphenols, or antioxidants, she said. These include the phenolic acids, caffeic acid, p-coumaric acid and ellagic acid, as well as many flavonoids. "Several studies have demonstrated a correlation between the non-peroxide antimicrobial and antioxidant activities of honey and the presence of honey phenolics," she added. A large number of laboratory and limited clinical studies have confirmed the broad-spectrum antibacterial, antifungal and antiviral properties of honey, according to Meschwitz.

She said that her team also is finding that honey has antioxidant properties and is an effective antibacterial. "We have run standard antioxidant tests on honey to measure the level of antioxidant activity," she explained. "We have separated and identified the various antioxidant polyphenol compounds. In our antibacterial studies, we have been testing honey's activity against E. coliStaphylococcus aureus and Pseudomonas aeruginosa, among others."

Monday, March 16, 2015

Newron, Zambon announce re-submission of safinamide NDA to FDA

In continuation of my update on safinamide 

Newron Pharmaceuticals S.p.A. ("Newron"), a research and development company focused on novel CNS and pain therapies, and its commercial and development partner Zambon S.p.A., an international pharmaceutical company, announced  that the NDA for safinamide has been re-submitted to the US FDA. This follows the announcement last week that the CHMP has given a positive opinion on safinamide for Europe.

The submission covers the indications "safinamide as add-on therapy to a stable dose of a single dopamine agonist" in early Parkinson's disease patients and "safinamide as add-on therapy to levodopa alone or in combination with other Parkinson's disease treatments" in mid-to late stage Parkinson's disease patients.

The first submission of safinamide to the US FDA was made in May 2014. On review, the FDA issued a Refusal to File (RTF) letter based on organizational and navigational problems, largely due relating to the hyperlinking of tables, folders and the organization of the table of contents in the submission.

Ravi Anand, Newron's CMO, stated: "Newron has been in frequent contact with the FDA to propose solutions to the technical issues and obtain their concurrence with the proposals. These discussions lead Newron to conclude that the RTF issues have been addressed in this submission."

Friday, March 13, 2015

Can-Fite BioPharma completes RA Phase III study of lead drug candidate CF101



Methyl 1 N6 3 Iodobenzyl Adenin 9 Yl B D Ribofuronamide Drug



Can-Fite BioPharma Ltd.  a biotechnology company with a pipeline of proprietary small molecule drugs that address inflammatory and cancer diseases, announced today that it completed the design of the Rheumatoid Arthritis (RA) Phase III study of its lead drug candidate CF101. Dr. M. Silverman, Can-Fite Medical Director, and Dr. Lee Simon, a key opinion leader in the field of autoimmune inflammatory diseases, designed the Phase III clinical study.

The Phase III study will be a multicenter, randomized, double-blind, placebo-controlled, parallel-group study that will investigate the efficacy and safety of daily CF101 administered orally as a monotherapy for 12 weeks to patients with active RA. The study will have three arms, a 2 mg CF101 dose, a 3mg CF101 dose and placebo, given orally twice daily in the form of tablets. Approximately 300 patients are expected to be enrolled in the study, where sample size for each treatment group will be approximately 100 patients and will provide a statistical power of at least 90%. The study primary end point will be ACR 20 response at Week 12. The A3 adenosine receptor biomarker will be evaluated prior to treatment and its correlation to patients' response to the drug will be analyzed upon study conclusion.

Thursday, March 12, 2015

Combination of bedaquiline and verapamil reduces side effects, improves outcomes for TB patients

In continuation of my update on Bedaquiline

While an effective treatment is available for combating multidrug-resistant tuberculosis, it carries serious side effects for patients. New research conducted at the Center for Tuberculosis Research at the Johns Hopkins University School of Medicine shows that lower doses of the toxic drug bedaquiline — given together with verapamil, a medication that's used to treat various heart conditions — can lead to the same antibacterial effects as higher toxic doses of bedaquiline. The combination of the two drugs could potentially shorten treatment time, reduce the side effects of bedaquiline and improve patient outcomes for those suffering from TB.

The study will be published in the January 2014 issue of Antimicrobial Agents and Chemotherapy. The lead author is William Bishai, M.D., Ph.D., co-director of the Center for Tuberculosis Research.

"Using a mouse model of tuberculosis, we have shown lower doses of bedaquiline together with verapamil have the same antibacterial effect as the higher toxic doses," says Shashank Gupta, Ph.D., a research fellow at Johns Hopkins. "A lower dose of bedaquiline will cause no or less severe side effects."

Two years ago, bedaquiline became the first drug in the last four decades to be approved by the U.S. Food and Drug Administration for the treatment of multidrug-resistant TB. The drug works by inhibiting an enzyme used by Mycobacterium tuberculosis to replicate and spread throughout the body. While it can be a lifesaving therapy against one of the world's deadliest diseases, bedaquiline can also cause serious side effects in the heart and liver. Therefore, strategies to reduce the dose of bedaquiline while retaining its antibacterial activity would provide significant benefits to patients.

"Shortening treatment regimens and reducing the required doses may be a promising strategy to reduce the incidence of bedaquiline-related adverse effects and thereby improve multidrug-resistant TB treatment outcomes," says Gupta.


Wednesday, March 11, 2015

FDA approves Myriad’s BRACAnalysis CDx for use with ovarian cancer drug

In continuation of my update on Olaparib

Myriad Genetics, Inc.    announced that it has received approval from the U.S. Food and Drug Administration (FDA) for BRACAnalysis CDx to be used as the only companion diagnostic in conjunction with AstraZeneca’s drug Lynparza™ (olaparib). Lynparza is the first poly ADP-ribose polymerase (PARP) inhibitor for patients with germline mutations in BRCA1/2 advanced ovarian cancer who have had three or more lines of chemotherapy. BRACAnalysis CDx is Myriad’s first FDA-approved companion diagnostic for use with a novel PARP inhibitor.

Tuesday, March 10, 2015

Final Phase 1 data of zoptarelin doxorubicin Phase 1/2 trial published in Clinical Cancer Research



Zoptarelin doxorubicin.svg


Aeterna Zentaris Inc. (NASDAQ: AEZS, TSX: AEZ) (the "Company")  announced that an article on final data for the Phase 1 portion of the ongoing Phase 1/2 trial in prostate cancer with zoptarelin doxorubicin (formerly AEZS-108), a hybrid molecule composed of a synthetic peptide carrier and a well-known chemotherapy agent, doxorubicin, has been published in the December issue of Clinical Cancer Research. The article outlines data previously disclosed in June 2013 at the American Society of Clinical Oncology's ("ASCO") Annual Meeting, which demonstrated the compound's safety profile and promising anti-tumor activity in heavily pre‑treated men with castration- and taxane-resistant prostate cancer. These results led to the current investigator-driven Phase 2 portion in this same indication under the supervision of lead investigator, Jacek Pinski, MD, PhD, of the USC Norris Comprehensive Cancer Center. Titled, "Phase I, Dose-Escalation Study of the Targeted Cytotoxic LHRH Analog AEZS-108 in Patients with Castration- and Taxane-Resistant Prostate Cancer", Liu SV, Tsao-Wei DD, Xiong S, Groshen S, Dorff TB, Quinn DI, Tai YC, Engel J, Hawes D, Schally AV, Pinski J., the article is available at this link: Clin Cancer Res.

Monday, March 9, 2015

Broccoli can help reduce HGPS-related defects

In continuation of my update on broccoli...

Children who suffer from Hutchinson-Gilford Progeria syndrome age prematurely due to a defective protein in their cells. Scientists at Technische Universität München have now identified another important pathological factor: the system responsible for removing cellular debris and for breaking down defective proteins operates at lower levels in HGPS cells than in normal cells. The researchers have succeeded in reactivating protein breakdown in HGPS cells and thus reducing disease-related defects by using a substance from broccoli.

Most Hutchinson-Gilford Progeria Syndrome (HGPS) patients carry a mutation that produces a defective form of the protein lamin A. This defective protein is referred to as progerin. Normal lamin A is a key component of the matrix surrounding the DNA in the cell nucleus and plays a role in gene expression. By contrast, the defective form, progerin, is not functional but is nevertheless continuously synthesized. The result is that progerin accumulates in the nucleus and causes the cell to "age". Consequently, HGPS patients develop classic diseases of old age such as atherosclerosis, osteoporosis, heart attacks and strokes. The disease is therefore regarded as a possible model system for the natural aging process in cells.

A window on the cell nucleus

In order to find out which specific metabolic pathways are affected by the mutation and the defective protein, Prof. Karima Djabali and her team from the TUM School of Medicine and the Institute for Medical Engineering conducted a comparative study of diseased and healthy tissue cells in which they investigated the composition of proteins in the cell nuclei and looked for differences.

Friday, March 6, 2015

Ganciclovir drug resistance may occur more frequently in cystic fibrosis patients



Ganciclovir structure.svg




A drug called ganciclovir is given to lung transplant patients to protect against a life-threatening virus that is common after transplantation.
Ganciclovir reduces mortality due to the virus from 34 percent to between 3 and 6 percent. But between 5 percent and 10 percent of patients infected with the virus have strains that are resistant to the drug.
A Loyola University Medical Center study found that such resistance may occur more frequently in cystic fibrosis patients. These patients were found to have insufficient levels of the drug in their bloodstream, enabling the virus to continually replicate. This in turn may increase the chance that mutations will occur and result in drug resistance.
The study suggests that cystic fibrosis patients should be monitored to ensure there are therapeutic levels of ganciclovir in their bodies, said James Gagermeier, MD, first author of the study. The study is published online ahead of print in the journal Transplant Infectious Disease.



Thursday, March 5, 2015

Palatin begins bremelanotide phase 3 study for treatment of female sexual dysfunction



Bremelanotide chemical structure.png


Palatin Technologies, Inc. (NYSE MKT: PTN), a biopharmaceutical company developing targeted, receptor-specific peptide therapeutics for the treatment of diseases with significant unmet medical needs and commercial potential, today announced that it has started its bremelanotide pivotal registration program. The Company has initiated its phase 3 reconnect study in the United States for the treatment of female sexual dysfunction (FSD).

"We are pleased to achieve this major milestone in the bremelanotide program with the initiation of our phase 3 reconnect study in the U.S," stated Carl Spana, Ph.D., President and CEO of Palatin. "This is a key step in our global strategy to bring bremelanotide to market for the millions of women who have FSD and are seeking a safe and effective treatment." Dr. Spana further stated that, "Our recent $30 million financing has provided the financial resources to start the bremelanotide phase 3 pivotal registration program and timing flexibility regarding partnering for the U.S. and other non-European territories."

Wednesday, March 4, 2015

Can-Fite BioPharma begins dosing in CF102 Phase II liver cancer trial



CF-102 structure

Can-Fite BioPharma Ltd. , a biotechnology company advancing a pipeline of proprietary small molecule drugs that address cancer and inflammatory diseases, today announced that it has dosed the first patient in a Phase II trial for the treatment of hepatocellular carcinoma (HCC), the most common form of liver cancer.

The Phase II randomized, double-blind, placebo controlled trial is to be conducted in the U.S., Europe and Israel with an estimated 78 patients to be enrolled. CF 102 is being evaluated for efficacy and safety as a second-line treatment for advanced HCC in subjects with Child-Pugh B who failed Nexavar as a first line treatment. The first patient was dosed at the study's Israeli site, the Rabin Medical Center. The primary endpoint of the study is overall patient survival.