Showing posts sorted by relevance for query honey. Sort by date Show all posts
Showing posts sorted by relevance for query honey. Sort by date Show all posts

Tuesday, March 17, 2015

Honey offers new approach to fighting antibiotic resistance ............





In continuation of my update on Honey..

Honey, that delectable condiment for breads and fruits, could be one sweet solution to the serious, ever-growing problem of bacterial resistance to antibiotics, researchers said in Dallas* today. Medical professionals sometimes use honey successfully as a topical dressing, but it could play a larger role in fighting infections, the researchers predicted.

"The unique property of honey lies in its ability to fight infection on multiple levels, making it more difficult for bacteria to develop resistance," said study leader Susan M. Meschwitz, Ph.D. That is, it uses a combination of weapons, including hydrogen peroxide, acidity, osmotic effect, high sugar concentration and polyphenols -- all of which actively kill bacterial cells, she explained. The osmotic effect, which is the result of the high sugar concentration in honey, draws water from the bacterial cells, dehydrating and killing them.

In addition, several studies have shown that honey inhibits the formation of biofilms, or communities of slimy disease-causing bacteria, she said. "Honey may also disrupt quorum sensing, which weakens bacterial virulence, rendering the bacteria more susceptible to conventional antibiotics," Meschwitz said. Quorum sensing is the way bacteria communicate with one another, and may be involved in the formation of biofilms. In certain bacteria, this communication system also controls the release of toxins, which affects the bacteria's pathogenicity, or their ability to cause disease.

Meschwitz, who is with Salve Regina University in Newport, R.I., said another advantage of honey is that unlike conventional antibiotics, it doesn't target the essential growth processes of bacteria. The problem with this type of targeting, which is the basis of conventional antibiotics, is that it results in the bacteria building up resistance to the drugs.

Honey is effective because it is filled with healthful polyphenols, or antioxidants, she said. These include the phenolic acids, caffeic acid, p-coumaric acid and ellagic acid, as well as many flavonoids. "Several studies have demonstrated a correlation between the non-peroxide antimicrobial and antioxidant activities of honey and the presence of honey phenolics," she added. A large number of laboratory and limited clinical studies have confirmed the broad-spectrum antibacterial, antifungal and antiviral properties of honey, according to Meschwitz.

She said that her team also is finding that honey has antioxidant properties and is an effective antibacterial. "We have run standard antioxidant tests on honey to measure the level of antioxidant activity," she explained. "We have separated and identified the various antioxidant polyphenol compounds. In our antibacterial studies, we have been testing honey's activity against E. coliStaphylococcus aureus and Pseudomonas aeruginosa, among others."

Wednesday, July 21, 2010

How honey kills bacteria..........

We know that, honey has antibiotic activity and has been used specially in burn injuries. Now researchers lead by Dr.Sebastian A.J. Zaat, of Department of Medical Microbiology at the Academic Medical Center in Amsterdam, have come up with an explanation for this antibiotic activity of honey. This first explanation to explain how honey kills bacteria. Specifically, the research shows that bees make a protein that they add to the honey, called defensin-1, which could one day be used to treat burns and skin infections and to develop new drugs that could combat antibiotic-resistant infections.

"We have completely elucidated the molecular basis of the antibacterial activity of a single medical-grade honey, which contributes to the applicability of honey in medicine," said Dr. Sebastian A.J. Zaat...


To make the discovery, Dr. Zaat and colleagues investigated the antibacterial activity of medical-grade honey in test tubes against a panel of antibiotic-resistant, disease-causing bacteria. They developed a method to selectively neutralize the known antibacterial factors in honey and determine their individual antibacterial contributions. Ultimately, researchers isolated the defensin-1 protein, which is part of the honey bee immune system and is added by bees to honey. All bacteria tested, including Bacillus subtilis, methicillin-resistant Staphylococcus aureus, extended-spectrum β-lactamase producing Escherichia coli, ciprofloxacin-resistant Pseudomonas aeruginosa, and vancomycin-resistant Enterococcus faecium, were killed by 10–20% (v/v) honey, whereas 40% (v/v) of a honey-equivalent sugar solution was required for similar activity.


After analysis, the scientists concluded that the vast majority of honey's antibacterial properties come from that protein. This information also sheds light on the inner workings of honey bee immune systems, which may one day help breeders create healthier and heartier honey bees.

http://www.fasebj.org/cgi/content/abstract/24/7/2576

Saturday, March 24, 2012

Healthy lactic acid bacteria in wild honey bees can fight bacterial infections

In continuation of my update on the usefulness of honey...

Healthy lactic acid bacteria in wild honey bees can fight bacterial infections: The stomachs of wild honey bees are full of healthy lactic acid bacteria that can fight bacterial infections in both bees and humans. A collaboration between researchers at three universities in Sweden ¬- Lund University, the Swedish University of Agricultural Sciences and Karolinska Institutet - has produced findings that could be a step towards solving the problems of both bee deaths and antibiotic resistance...

Wednesday, April 22, 2015

Bitter gourd(Karela) leaves Medicinal uses

In continuation of my update on bitter gourd

Phytochemical constituents of Bitter gourd Leaves

Alkaloid, Flavonoids, Sterols, Terpenoids, Anthraquinones, Proteins and Phenols, glycosides including momordin, charantosides, glycosides, momordicosides, goyaglycosides and other terpenoid compounds that include momordicin-28, momordicinin, momordicilin, momordenol, and momordol.

Medicinal Uses of Bitter gourd Leaves

Bitter gourd leaves are used to treat variety of diseases such as diabetes, piles, respiratory ailments, cholera, viral diseases and skin eruptions. Below is listed few such time-tested home remedies. These are simple, reliable and inexpensive. Even modern studies also support these traditional treatments.
Diabetes
Take about six tablespoon of the chopped bitter gourd leaves and two glass of water. Boil leaves in water for approximately 15 minutes. Do not cover the vessel.
Allow it to cool and then strain. Drink 1/3 cup of it thrice a day.
This leaf decoction is found to be very effective in the management of diabetes type 2. On regular intake, this keeps blood sugar in control.
Piles
Common home remedy is to extract three teaspoonful juice from clean bitter melon leaves and mix this with a glassful of buttermilk. This should be taken every morning for about a month on empty stomach. Topically leaves paste can be applied over the haemorrhoids.
Cholera, diarrhoea
Intake of 10-15 ml juice of Karela leaves is useful in diarrhoea and early stage of cholera.
Asthma, bronchitis, common colds, pharyngitis
Bitter melon leaves paste is mixed with equal amounts of the paste of tulsi/Basil leaves.
This should be taken with honey each morning. This can also be taken as preventive medicine for respiratory problems.
Arthritis
  1. Drinking 10-15 ml juice of Karela leaves is beneficial in arthritis.
  2. Ascite (gastroenterological term for an accumulation of fluid in the peritoneal cavity)
  3. Extract 10-15 ml juice of leaves and add some honey and drink.
Hepatitis
In Hepatitis, the leaves juice of bitter gourd is useful. Extract 10-15 ml juice of bitter gourd leaves and mix some big chebulic myroblan powder and drink.
Intestinal parasites, pox, measles, Pneumonia
Drinking 10-15 ml juice of Karela leaves is useful.
Boils, burns and other skin eruptions
The dried and powdered bitter gourd leaves can be applied topically on affected areas.
Burning sensation in hands and feet
Bitter gourd juice is applied topically in burning sensation in hands and feet.
Nutrition
Bitter melon leaves are good source of vitamins and minerals such as iron, calcium, phosphorus and vitamin B.

Monday, May 29, 2017

Ginger-derived nanoparticles may be good medicine for inflammatory bowel disease

A recent study by researchers at the Atlanta Veterans Affairs Medical Center took them to a not-so-likely destination: local farmers markets. They went in search of fresh ginger root.

Back at the lab, the scientists turned the ginger into what they are calling GDNPs, or ginger-derived nanoparticles. The process started simply enough, with your basic kitchen blender. But then it involved super-high-speed centrifuging and ultrasonic dispersion of the ginger juice, to break it up into single pellets. (Don't try this at home!)

The research team, led by Dr. Didier Merlin with VA and the Institute for Biomedical Sciences at Georgia State University, believes the particles may be good medicine for Crohn's disease and ulcerative colitis, the two main forms of inflammatory bowel disease (IBD). The particles may also help fight cancer linked to colitis, the scientists believe.

They report their findings, based on experiments with cells and mice, in the September 2016 issue of Biomaterials.

Each ginger-based nanoparticle was about 230 nanometers in diameter. More than 300 of them could fit across the width of a human hair.

Fed to lab mice, the particles appeared to be nontoxic and had significant therapeutic effects:
  • Importantly, they efficiently targeted the colon. They were absorbed mainly by cells in the lining of the intestines, where IBD inflammation occurs.
  • The particles reduced acute colitis and prevented chronic colitis and colitis-associated cancer.
  • They enhanced intestinal repair. Specifically, they boosted the survival and proliferation of the cells that make up the lining of the colon. They also lowered the production of proteins that promote inflammation, and raised the levels of proteins that fight inflammation.
Part of the therapeutic effect, say the researchers, comes from the high levels of lipids--fatty molecules--in the particles, a result of the natural lipids in the ginger plant. One of the lipids is phosphatidic acid, an important building block of cell membranes.

The particles also retained key active constituents found naturally in ginger, such as 6-gingerol and 6-shogaol. Past lab studies have shown the compounds to be active against oxidation, inflammation, and cancer. They are what make standard ginger an effective remedy for nausea and other digestion problems. Traditional cultures have used ginger medicinally for centuries, and health food stores carry ginger-based supplements--such as chews, or the herb mixed with honey in a syrup--as digestive aids.
Delivering these compounds in a nanoparticle, says Merlin's team, may be a more effective way to target colon tissue than simply providing the herb as a food or supplement.
Ginger contains compounds active against oxidation, inflammation, and cancer.

The idea of fighting IBD with nanoparticles is not new. In recent years, Merlin's lab and others have explored how to deliver conventional drugs via nanotechnology. Some of this research is promising. The approach may allow low doses of drugs to be delivered only where they are needed--inflamed tissue in the colon--and thus avoid unwanted systemic effects.

The advantage of ginger, say the researchers, is that it's nontoxic, and could represent a very cost-effective source of medicine.

The group is looking at ginger, and other plants, as potential "nanofactories for the fabrication of medical nanoparticles."

Merlin and his VA and Georgia State University coauthors elaborated on the idea in a report earlier this year titled "Plant-derived edible nanoparticles as a new therapeutic approach against diseases." They wrote that plants are a "bio-renewable, sustainable, diversified platform for the production of therapeutic nanoparticles."

Ref : http://www.research.va.gov/currents/0816-2.cfm

Thursday, April 27, 2017

Cinnamon treatment turns poor-learning mice into good ones, research shows

If Dr. Kalipada Pahan's research pans out, the standard advice for failing students might one day be: Study harder and eat your cinnamon!

Image result for cinnamon Image result for sodium benzoate (sodium benzoate)

Pahan a researcher at Rush University and the Jesse Brown Veterans Affairs Medical Center in Chicago, has found that cinnamon turns poor learners into good ones--among mice, that is. He hopes the same will hold true for people.

His group published their latest findings online June 24, 2016, in the Journal of Neuroimmune Pharmacology.

"The increase in learning in poor-learning mice after cinnamon treatment was significant," says Pahan. "For example, poor-learning mice took about 150 seconds to find the right hole in the Barnes maze test. On the other hand, after one month of cinnamon treatment, poor-learning mice were finding the right hole within 60 seconds."

Pahan's research shows that the effect appears to be due mainly to sodium benzoate--a chemical produced as cinnamon is broken down in the body.

If that chemical sounds familiar, you may have noticed it on the ingredient labels of many processed foods. Food makers use a synthetic form of it as a preservative. It is also an FDA-approved drug used to treat hyperammonemia--too much ammonia in the blood.

Though some health concerns exist regarding sodium benzoate, most experts agree it's perfectly safe in the amounts generally consumed. One reassuring point is that it's water-soluble and easily excreted in the urine.

Cinnamon acts as a slow-release form of sodium benzoate, says Pahan. His lab studies show that different compounds within cinnamon--including cinnamaldehyde, which gives the spice is distinctive flavor and aroma--are "metabolized into sodium benzoate in the liver. Sodium benzoate then becomes the active compound, which readily enters the brain and stimulates hippocampal plasticity."

Those changes in the hippocampus--the brain's main memory center--appear to be the mechanism by which cinnamon and sodium benzoate exert their benefits.

In their study, Pahan's group first tested mice in mazes to separate the good and poor learners. Good learners made fewer wrong turns and took less time to find food.

In analyzing baseline disparities between the good and poor learners, Pahan's team found differences in two brain proteins. The gap was all but erased when cinnamon was given.

"Little is known about the changes that occur in the brains of poor learners," says Pahan. "We saw increases in GABRA5 and a decrease in CREB in the hippocampus of poor learners. Interestingly, these particular changes were reversed by one month of cinnamon treatment."

The researchers also examined brain cells taken from the mice. They found that sodium benzoate enhanced the structural integrity of the cells--namely in the dendrites, the tree-like extensions of neurons that enable them to communicate with other brain cells.

Cinnamon, like many spices, has antioxidant and anti-inflammatory properties. So it could be expected to exert a range of health-boosting actions, and it does have a centuries-long history of medicinal use around the world.

But the U.S. National Center for Complementary and Integrative Health says that "high-quality clinical evidence to support the use of cinnamon for any medical condition is generally lacking." Most of the clinical trials that have taken place have focused on the spice's possible effect on blood sugar for people with diabetes. Little if any clinical research has been done on the spice's possible brain-boosting properties.

Pahan hopes to change that. Based on the promising results from his group's preclinical studies, he believes that "besides general memory improvement, cinnamon may target Alzheimer's disease, mild cognitive impairment [a precursor to Alzheimer's], and Parkinson's disease as well." He is now talking with neurologists about planning a clinical trial on Alzheimer's.

Before you start heaping cinnamon on your oatmeal, keep a few caveats in mind.

First, most cinnamon found in the store is the Chinese variety, which contains a compound called coumarin that may be toxic to the liver in high amounts. A person would likely have to eat tons of cinnamon to run into a problem, but just the same, Pahan recommends the Ceylon or Sri Lanka type, which is coumarin-free.

Even then, don't overdo it. "Anything in excess is toxic," says Pahan.

What about simply inhaling the pleasant-smelling spice? Will that benefit the brain?

"Simply smelling the spice may not help because cinnamaldehyde should be metabolized into cinnamic acid and then sodium benzoate," explains Pahan. "For metabolism [to occur], cinnamaldehyde should be within the cell."

As for himself, Pahan isn't waiting for clinical trials. He takes about a teaspoonful--about 3.5 grams--of cinnamon powder mixed with honey as a supplement every night.

Should the research on cinnamon continue to move forward, he envisions a similar remedy being adopted by struggling students worldwide.

"Individual differences in learning and educational performance is a global issue, he says. "In many cases, we find two students of the same background studying in the same class, and one turns out to be a poor learner and does worse than the other academically. Now we need to find a way to test this approach in poor learners. If these results are replicated in poor-learning students, it would be a remarkable advance. At present, we are not using any other spice or natural substance."