Thursday, October 11, 2012

GenSpera plans to initiate G-202 Phase II trial in prostate cancer


 We know that, a Mediterranean plant (see pic), Thapsia garganica, a simple weed, is the original source of G202. For millennia, the plant has been known to be poisonous to animals; in the days of desert caravans, it was called the “death carrot” for the unfortunate fate awaiting any camel that ingested it. Researchers at the Johns Hopkins Kimmel Cancer Center in the US and their Danish collaborators hoped to harness the toxicity of the plant in a controlled way that could be used to treat cancer in people.

They did so by taking apart the toxic compound, thapsigargin, produced by the plant and altering its chemical structure. The resulting prodrug, G202, is not active until it comes into contact with a particular protein produced by certain tumors. This prostate-specific membrane antigen (PMSA) is released by cells lining the outside of prostate and other tumors. Samuel Denmeade, the study’s lead author, uses the image of a hand grenade. The presence of PMSA essentially “pulls the pin” of the G202 grenade. In its active form, the drug is able to kill not only the tumor, but the blood vessels that provide it with nutrients.
A recent study of  G202,  looked at the effects of the drug on human prostate tumors grown in mice, and compared it to docetaxel, a chemotherapy drug already in use. G202 clearly came out on top, reducing by half the size of seven out of nine tumors; docetaxel achieved the same effect on only one out of eight tumors. Similar results for G202 were also seen in experiments with human breast, kidney and bladder cancer.

These promising results encouraged doctors to test the safety of G202 in a phase I clinical trial, involving 29 cancer patients at advanced stages of the disease.  

Now its  good news that,......


Tuesday, October 9, 2012

Potential new COPD drug

 
A study led by researchers at Boston University School of Medicine (BUSM) has shown that a compound used in some skin creams may halt the progression of emphysema and reverse some of the damage caused by the disease. When the compound Gly-His-Lys (GHK) was applied to lung cells from patients with emphysema, normal gene activity in altered cells was restored and damaged aspects of cellular function were repaired. 


Researchers took cells from lungs donated by patients undergoing a double lung transplant because their lungs were irrevocably damaged by COPD and found 127 genes had changes in activity as disease severity increased within the lung. The genes that showed increased activity included several that are associated with inflammation, such as those involved in signalling to B-cells (the immune system cells that make antibodies).

In contrast, the genes involved in maintaining cellular structure and normal cellular function, along with the growth factors TGFβ and VEGF, were down-regulated and showed decreased activity. Genes that control the ability of the cells to stick together (cell adhesion), produce the protein matrix that normally surrounds the cells and promote the normal association between lung cells and blood vessels were among the genes in this category. 

Using genomic technologies and computational methods, the researchers identified genetic activity defects that occur as emphysema progresses and matched these defects with compounds that could reverse the damage.


"Our study results showed that the way genes were affected by the compound GHK, a drug identified in the 1970s, was the complete opposite of the pattern we had seen in the cells damaged by emphysema," said Marc Lenburg, PhD, associate professor in computational biomedicine and bioinformatics at BUSM and one of the study's senior authors.

Potential new COPD drug

Monday, October 8, 2012

Potential drug for treatement of Alzheimer's disease investigated


Cannabinoid type 2 (CB2) agonists are neuroprotective and appear to play modulatory roles in neurodegenerative processes in Alzheimer's disease. We have studied the effect of 1-((3-benzyl-3-methyl-2,3-dihydro-1-benzofuran-6-yl) carbonyl) piperidine (MDA7 see below structure), a novel selective CB2 agonist that lacks psychoactivity—on ameliorating the neuroinflammatory process, synaptic dysfunction, and cognitive impairment induced by bilateral microinjection of amyloid-β (Aβ)1–40 fibrils into the hippocampal CA1 area of rats. In rats injected with Aβ1–40 fibrils, compared with the administration of intraperitoneal saline for 14 days, treatment with 15 mg/kg of intraperitoneal MDA7 daily for 14 days (1) ameliorated the expression of CD11b (microglia marker) and glial fibrillary acidic protein (astrocyte marker), (2) decreased the secretion of interleukin-1β, (3) decreased the upsurge of CB2 receptors, (4) promoted Aβ clearance, and (5) restored synaptic plasticity, cognition, and memory. Our findings suggest that MDA7 is an innovative therapeutic approach for the treatment of Alzheimer's disease.




Potential drug for treatement of Alzheimer's disease investigated

Sunday, October 7, 2012

Carboranes Increase the Potency of Small Molecule Inhibitors of Nicotinamide Phosphoribosyltranferase - Journal of Medicinal Chemistry (ACS Publications)


We know that,  carborane is a cluster composed of boron and carbon atoms. Like many of the related boranes, these clusters are polyhedra and are similarly classified as closo-, nido-, arachno-, hypho-, etc. based on whether they represent a complete (closo-) polyhedron, or a polyhedron that is missing one (nido-), two (arachno-), or more vertices. Interesting examples of carboranes are the extremely stable icosahedral closo-carboranes.

A prominent example is the charge-neutral C2B10H12 or o-carborane with the prefix o derived from ortho, which has been explored for use in a wide range of applications from heat-resistant polymers to medical applications.  

Now researchers lead by Dr. Lee of University of Missouri used carboranes to build new drugs designed to shut off a cancer cell's energy production, which is vital for the cell's survival. All cells produce energy through complex, multi-step processes. The key to an effective drug is targeting the process that cancer cells depend on more than healthy cells. By increasing the binding strength of a drug, a smaller dose is required, minimizing side effects and increasing the effectiveness of the therapy. With carboranes, Lee found that the drug is able to bind 10 times more powerfully.

"The reason why these drugs bind stronger to their target is because carboranes exploit a unique and very strong form of hydrogen bonding, the strongest form of interactions for drugs," Lee said.

Lee said that this discovery also will lead to further uses for the drug.

"Too often, after radiation or chemotherapy, cancer cells repair themselves and reinvade the body," Lee said. "This drug not only selectively shuts off the energy production for the cancer cells, but it also inhibits the processes that allow those cancer cells to repair themselves. When we tested our carborane-based drugs, we found that they were unimaginably potent. So far, we have tested this on breast, lung and colon cancer, all with exceptional results."

According to Lee, this is the first study to show systematically how carboranes can improve the activity of a drug. Lee believes this discovery will open additional possibilities of improving drugs that are used to treat other diseases, not just cancer.

"The end result is that these new drugs could be many thousands of times more potent than the drugs that are used in the clinics today," Lee said.

 Carboranes Increase the Potency of Small Molecule Inhibitors of Nicotinamide Phosphoribosyltranferase - Journal of Medicinal Chemistry (ACS Publications)

Saturday, October 6, 2012

Thiabendazole drug slows tumor growth and shows promise as chemotherapy for cancer

An inexpensive antifungal drug, thiabendazole (see structure), slows tumor growth and shows promise as a chemotherapy for cancer. Scientists in the College of Natural Sciences at The University of Texas at Austin made this discovery by exploiting the evolutionary relatedness of yeast, frogs, mice and humans.



Thiabendazole is an FDA-approved, generic drug taken orally that has been in clinical use for 40 years as an antifungal. It is not currently used for cancer therapy.....


Friday, October 5, 2012

FDA Supports Phase 3 Trial for NGX-1998 | News | Drug Discovery and Development Magazine

NeurogesX Inc., a specialty pharmaceutical company focused on developing and commercializing a portfolio of novel non-opioid, pain management therapies, provided an update on its regulatory process for NGX-1998 (see below structure), the company's next generation liquid formulation of prescription-strength capsaicin. NeurogesX has received End-of-Phase 2 guidance from the U.S. Food and Drug Administration (FDA) regarding its previously announced plans for the Phase 3 clinical development of NGX-1998 as a treatment for neuropathic pain conditions, including key elements of its overall development plan related to manufacturing, applicator development, and clinical trial design.




FDA Supports Phase 3 Trial for NGX-1998 | News | Drug Discovery and Development Magazine

Thursday, October 4, 2012

Less commonly prescribed antibiotic may be better for bloodstream infections

 In continuation of my update on Vancomycin

Kevin Chan, MD (Fresenius Medical Care North America and Massachusetts General Hospital) and his colleagues compared the effectiveness of various antibiotics at preventing hospitalization and death from bloodstream infection. They reviewed more than 500,000 blood culture results from their chronic kidney disease database, looking for methicillin-sensitive strains of S. aureus bloodstream infection. They also identified when physicians used vancomycin or cefazolin to treat these infections. Vancomycin is often perceived as the better antibiotic because it has broad coverage against many strains of bacteria; however, other factors like the antibiotic's killing power and tissue penetration are also important factors in selecting the best treatment.


  
Among the major findings:
  • 56% of patients remained on vancomycin after blood culture results reported S. aureus bacteria were susceptible to cefazolin, while only 17% were treated with cefazolin. 
  • Cefazolin-treated patients experienced a 38% lower rate of hospitalization and death compared with vancomycin-treated patients. 
  • Cefazolin-treated patients also had a 48% lower rate of sepsis, which is the most serious form of bloodstream infection.
  • "I think the data suggest there is an opportunity to improve outcomes for patients through appropriate antibiotic selection," said Dr. Chan.

Ref : http://jasn.asnjournals.org/content/early/2012/08/15/ASN.2012010050

Wednesday, October 3, 2012

Resveratrol might help improve mobility and prevent life-threatening falls among older people

In continuation of my update on Resveratrol...

"Our study suggests that a natural compound like resveratrol, which can be obtained either through dietary supplementation or diet itself, could actually decrease some of the motor deficiencies that are seen in our aging population," said Jane E. Cavanaugh, Ph.D., leader of the research team. "And that would, therefore, increase an aging person's quality of life and decrease their risk of hospitalization due to slips and falls."

Tuesday, October 2, 2012

FDA Approves Stivarga | News | Drug Discovery and Development Magazine

Golden age of prostate cancer treatment hailed as fourth drug in two years extends life

We know that, Enzalutamide (formerly known as MDV3100, see the structure) is an experimental androgen receptor antagonist drug developed by the pharmaceutical company Medication for the treatment of castration-resistant prostate cancer currently in phase 3 clinical trials. Results so far have been encouraging; Medivation has reported up to an 89% decrease in prostate specific antigen serum levels after a month of taking the medicine. Early preclinical studies also suggest that enzalutamide inhibits breast cancer cell growth. 

Researchers from Institute of Cancer Research, London, and its partner hospital The Royal Marsden NHS Foundation Trust jointly led the new Phase III trial of enzalutamide and the Phase III trials of two other drugs, cabazitaxel and abiraterone. Abiraterone was also discovered at The Institute of Cancer Research and was recently made available on the NHS. A further drug sipuleucel-T has also been shown to extend life in the two-year period.

"What we're seeing now is an unprecedented period of success for prostate cancer research, with four new drugs shown to extend life in major clinical trials in just two years, and several others showing promise. It truly is a golden age for prostate cancer drug discovery and development" claims Prof. Martin Gore....

Monday, October 1, 2012

AEOL10150 Protects Against Nerve Gas | News | Drug Discovery and Development Magazine

The study confirmed AEOL10150 (see structure)’s ability to cross the rat blood brain barrier and achieve sufficient levels to exert its neuroprotective effects.  Further, the study showed that subcutaneous administration of AEOL10150 30 min prior to or 60 and 90 minutes after nerve agent exposure resulted in inhibition of markers of oxidative stress and neuronal damage.

“These new data show that AEOL 10150 has potential neuroprotective properties against chemical nerve agents and broaden the utility of protection proved by AEOL 10150 across the chemical threat spectrum”, stated John L. McManus, President and Chief Executive Officer of Aeolus Pharmaceuticals, Inc.  “This study builds on prior work that has shown AEOL 10150 to be an effective countermeasure to protect the lungs from damage due to inhalation of chlorine, sulfur mustard, and phosgene gas and well as protection against radiologic damage to the lungs and gastrointestinal tract.”  

AEOL10150 Protects Against Nerve Gas | News | Drug Discovery and Development Magazine

Sunday, September 30, 2012

Pilot Study Drug Controls Blood Sugar in People with HI | The Children's Hospital of Philadelphia

The standard treatment for some forms of congenital HI is diazoxide (right structure), a drug that controls insulin secretion by opening potassium channels in beta cells. However, this drug does not work in the most common types of HI, in which mutations prevent these potassium channels from forming.                                       
A pilot study in adolescents and adults has found that an investigational drug (Exendin 9-39) (see below structure) shows promise as the first potential medical treatment for children with the severest type of congenital hyperinsulinism, a rare but potentially devastating disease in which gene mutations cause insulin levels to become dangerously high.

Saturday, September 29, 2012

Hint of tafamidis benefit in rare polyneuropathy

The results of a randomized trial suggest that tafamidis treatment may slow the progression of early-stage V30M transthyretin familial amyloid polyneuropathy.

During 18 months of treatment, 45.3% of the 65 patients given tafamidis (see structure) 20 mg/day worsened by less than 2 points on the Neuropathy Impairment Score-Lower Limbs (NIS-LL). The rate among 63 placebo-treated patients was 29.5%, which was a nonsignificant difference. 

The Norfolk Quality of Life-Diabetic Neuropathy total score (TQOL) worsened by 2.0 points in the tafamidis group, compared with 7.2 points in the placebo group - also a nonsignificant difference.

But this analysis was based on the intent-to-treat population. A higher than anticipated dropout rate, caused by patients requiring liver transplantation, meant that just 87 of the original 125 patients actually completed the treatment.

In this group, 60.0% versus 38.1% of those treated with tafamidis and placebo had a less than 2-point deterioration on the NIS-LL, and TQOL scores worsened by a corresponding 0.1 versus 8.9..... 

More...
Hint of tafamidis benefit in rare polyneuropathy

Friday, September 28, 2012

Developing the First Novel Drug Regimen from TB Alliance...

TB Alliance’s push to test new drugs in combination has been done to produce a regimen that not only would be faster and easier for patients, but also would tackle two other challenges as a major step in stopping the spread of drug-resistant TB—the complexity and high cost of treatment. This promising regimen eliminates the use of injectables and projects to reduce the cost of MDR-TB therapy by as much as 90 percent.

The study, NC-001, or New Combination 1, was a two-week trial successfully completed at two centers in South Africa. It involved the new combination therapy called PaMZ, consisting of the novel TB drug candidate, PA-824 (see below structure left); moxifloxacin (right structure), an established antibiotic not yet approved for use in first-line TB therapy and being developed in partnership with Bayer Healthcare AG; and pyrazinamide, an existing TB drug.

“Treating drug-sensitive and drug-resistant TB with the same regimen can simplify the delivery of TB treatment worldwide,” said Andreas Diacon, MD, the trial’s principal investigator and lead author of the Lancet study. “The results of this study give healthcare providers on the front lines of the TB epidemic hope for better, faster tools needed to stop this disease.”
 (Pyrazinamide)

Newscenter | Global Alliance for TB Drug Development

Chemical makes blind mice see; compound holds promise for treating humans

The chemical, called AAQ (see below structure,   acrylamide- azobenzene - quaternary ammonium),  acts   by taking the remaining, normally "blind" cells in the retina  sensitive to  light,  said  lead  researcher  Richard Kramer, UC Berkeley professor of molecular and cell biology.   AAQ is a photoswitch that binds to protein ion channels on the surface of retinal cells. When switched on by light, AAQ alters the flow of ions through the channels and activates these neurons much the way rods and cones are activated by light.

The blind mice in the experiment had genetic mutations that made their rods and cones die within months of birth and inactivated other photopigments in the eye. After injecting very small amounts of AAQ into the eyes of the blind mice, Kramer and his colleagues confirmed that they had restored light sensitivity because the mice's pupils contracted in bright light, and the mice showed light avoidance, a typical rodent behavior impossible without the animals being able to see some light. Kramer is hoping to conduct more sophisticated vision tests in rodents injected with the next generation of the compound.

Because the chemical eventually wears off, it may offer a safer alternative to other experimental approaches for restoring sight, such as gene or stem cell therapies, which permanently change the retina. It is also less invasive than implanting light-sensitive electronic chips in the eye.

"The advantage of this approach is that it is a simple chemical, which means that you can change the dosage, you can use it in combination with other therapies, or you can discontinue the therapy if you don't like the results. As improved chemicals become available, you could offer them to patients. You can't do that when you surgically implant a chip or after you genetically modify somebody," Kramer said...........