Showing posts sorted by relevance for query cauliflower, cabbage, broccoli. Sort by date Show all posts
Showing posts sorted by relevance for query cauliflower, cabbage, broccoli. Sort by date Show all posts

Monday, August 10, 2015

Plant-derived compound targets cancer stem cells

In continuation of my updates on cauliflower, cabbage, broccoli

A compound and an enzyme that occur naturally in cruciferous vegetables--cauliflower, cabbage, broccoli and Brussels sprouts--may help prevent recurrence and spread of some cancers, according to researchers. When they treated human cervical cancer stem cells with phenethyl isothiocyanate (PEITC) in a Petri dish, about 75 percent died within 24 hours using a 20-micromolar concentration of the compound.  
Phenethyl isothiocyanate.svg

A compound and an enzyme that occur naturally in cruciferous vegetables -- cauliflower, cabbage, broccoli and Brussels sprouts -- may help prevent recurrence and spread of some cancers, according to associate professor Moul Dey of the South Dakota State University Department of Health and Nutritional Sciences. She has been doing research on phenethyl isothiocyanate (PEITC) through a five-year grant from the National Institutes of Health for more than $875,000 and support from the South Dakota Agricultural Experiment Station.
The precursor compound and enzyme in cruciferous vegetables combine during the chewing process to produce PEITC within the body, Dey explained. Though PEITC is a good candidate to develop as a dietary supplement, studies have also shown that sufficient cancer-preventing levels of PEITC can be achieved through diet alone.
Role of cancer stem cells
When cancer is treated with chemotherapy or radiation, the tumor disappears but the cancer stem cells live on. "These cells are frequently resistant to conventional therapies," Dey said.
Though cancer stem cells make up less than 5 percent of a tumor, they can regenerate the original tumor and migrate through the blood vessels spreading cancer to secondary locations.
"These tiny cells are very difficult to detect in a tumor," Dey pointed, adding that for a long time scientists did not even know they existed. "It's like finding a needle in a haystack."

Promising Results
When Dey and her team treated human cervical cancer stem cells with PEITC in a Petri dish, about 75 percent died within 24 hours using a 20-micromolar concentration of the compound.
In other experiments, Dey and her team have found that lower concentrations of PEITC are still very effective. Working with SDSU veterinary pathologist David Knudsen, Dey and her team found that 10-micromolar concentrations of PEITC can dramatically prevent the spread of cancer in mouse lung tissue.

"Preliminary evidence has shown a quite dramatic difference between the lung sections from the PEITC-treated and untreated mice," Dey said. However, she cautioned, although mice provide a model for human diseases, further testing is necessary to determine whether outcomes will be similar in humans.

Based on information from scientific literature, the concentrations of PEITC that Dey and her team typically use in their research -- 5 to 15 micromolars -- may be achieved through diets rich in certain types of cruciferous vegetables, particularly land and watercress.

Next, she and her team will examine how PEITC is able to overcome the resistance mechanisms that protect these stem cells from other drugs. "That's the second piece of this work," Dey added.

Monday, April 13, 2009

Broccoli sprouts may help prevent stomach cancer !










Pict., of Broccoli (Structures of DIM & Sulforaphane respectively)

We knew that Broccoli has anticancer activity due to the presence Diindolylmethane, DIM (Str-1). DIM is a natural compound formed during the autolytic breakdown of glucobrassicin present in food plants of the Brassica genus, including broccoli, cabbage, Brussels sprouts, cauliflower and kale. The autolytic breakdown of glucobrassicin requires the catalytic reaction of the enzyme myrosinase which is endogenous to these plants and released upon rupture of the cell wall

(the same compound, has been tested for viral nfections,bacterial infections and immune deficiency diseases also). And boiling the Broccoli, will lead to the loss of this
compound has been also established
Now more interestingly, Dr. Jed Fahey has come out with something different and this time they have mentioned about a phytochemical from broccoli, i.e., sulforaphane. Though the cancer protective effects of sulforaphane is known two decades ago, but this is the first study to show an effect of broccoli in humans on the bacterial infection that leads to stomach cancer. In this study, researchers enrolled 48 Helicobacter-infected Japanese men and women and randomly assigned them to eat 70 grams of fresh broccoli sprouts daily for eight weeks or an equivalent amount of alfalfa sprouts.

Researchers assessed the severity of H. pylori infection at enrollment, and again at four and eight weeks using standard breath, serum and stool tests. H. pylori levels were significantly lower at eight weeks on all three measures among those patients who had eaten broccoli sprouts, while they remained the same for patients who had eaten alfalfa sprouts.
A reduction in H. pylori is expected to lead to a reduction in stomach cancer due to their well-established cause-and-effect link. Stomach cancer has a grim prognosis and is the second most common and the second deadliest cancer worldwide. Congrats Dr. Jed Fahey and group...

Saturday, July 3, 2010

How Dietary Supplement (Broccoli, Cabbage) May Block Cancer Cells....

In continuation of  how dietary supplement may block cancer cells... In my earlier blogs,  I have mentioned that, natural compound formed during the autolytic breakdown of glucobrassicin present in food plants of the Brassica genus, including broccoli, cabbage, Brussels sprouts, cauliflower and kale) are responsible for the anticancer activity associated with broccoli and other Brassica genus.

Now researchers at the Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC-James) have discovered how a substance  (see below structure) that is produced when eating broccoli and Brussels sprouts can block the proliferation of cancer cells.

Compelling evidence indicates that the substance, indole-3-carbinol [(above structure, I3C) : Glucobrassicin (right structure) is a type of glucosinolate that can be found in almost all cruciferous plants, such as cabbages  and broccoli, degradation by the enzyme myrosinase is expected to produce an isothiocyanate, indol-3-ylmethylisothiocyanate- which is unstable and hydrlyses to give, I3C, as most dominant degradation product], may have anticancer effects and other health benefits, the researchers say. These findings show how I3C affects cancer cells and normal cells.

The laboratory and animal study discovered a connection between I3C and a molecule called Cdc25A, which is essential for cell division and proliferation. The research showed that I3C causes the destruction of that molecule and thereby blocks the growth of breast cancer cells.

"Cdc25A is present at abnormally high levels in about half of breast cancer cases, and it is associated with a poor prognosis," says study leader Xianghong Zou, assistant professor of pathology at the Ohio State University Medical Center.
For this study, Zou and his colleagues exposed three breast cancer cell lines to I3C. These experiments revealed that the substance caused the destruction of Cdc25A. They also pinpointed a specific location on that molecule that made it susceptible to I3C, showing that if that location is altered (because of a gene mutation), I3C no longer causes the molecule's destruction.

Last, the investigators tested the effectiveness of I3C in breast tumors in a mouse model. When the substance was given orally to the mice, it reduced tumor size by up to 65 percent. They also showed that I3C had no affect on breast-cell tumors in which the Cdc25A molecule had a mutation in that key location.

Ref :  American Association for Cancer Research : Cancer Prevention Research, Xianghong Zou et al.,

Wednesday, September 28, 2011

Broccoli, Cabbage, and other Veggies May Protect Against Colon Cancer


In continuation of my update on the usefulness of broccoli 
Austrailian researchers examined the diets of 918 colorectal cancer patients and 1,021 people with no history of the disease and found that consumption of certain vegetables and fruits were associated with a decreased risk of cancer in the proximal and distal colon, that is, the upper and lower portions of the colon.


Consumption of brassica vegetables (also known as cole crops) such as broccoli, kale, cauliflower, turnips and cabbage, for example, appeared to reduce the risk of cancer in the upper colon, while both total fruit and vegetable intake (and total vegetable intake alone) reduced the risk of cancer in the lower colon.
They also found that eating more apples and dark, yellow vegetables was linked with a significantly reduced risk of lower colon cancer...


More....