Tuesday, November 23, 2010

Asthma Drug Prevents Spread of Breast Cancer, Study Finds......



We know that. Tranilast (structure, brand name Rizaben) is an antiallergic drug. It was developed by Kissei Pharmaceuticals and was approved in 1982 for use in Japan and South Korea for bronchial asthma. Indications for keloid and hypertrophic scar were added in 1993. It has been used for the treatment of allergic disorders such as asthma, allergic rhinitis and atopic dermatitis. It has been also reported that it reduces (in-vitro) collagen synthesis in fibroblasts, inhibits the growth of neurofibroma cells and inhibits ( in-vitro) the production of interleukin-6 in endothelial cells.

Now researchers from St. Michael's Hospital, Canada reports that the drug to stop the spread of breast cancer cells traditionally resistant to chemotherapy.

Researchers grew breast cancer stem cells, which give rise to other cancer cells, in culture. The cells were injected into two groups of mice, including one group, which was also treated with tranilast. Dr. Prud'homme and his colleagues found the drug reduced growth of the primary cancerous tumour by 50 per cent and prevented the spread of the cancer to the lungs. Researchers also identified a molecule in the cancer cell that binds to tranilast and appears to be responsible for this anti-cancer effect.

As per the researchers 'Tranilast' binds to a molecule known as the aryl hydrocarbon receptor (AHR), which regulates cell growth and some aspects of immunity. This makes the drug beneficial in treating allergies, inflammatory diseases and cancer.

"For the first time, we were able to show that tranilast shows promise for breast cancer treatment in levels commonly well-tolerated by patients who use the drug for other medical conditions," Dr. Prud'homme said. "These results are very encouraging and we are expanding our studies. Further studies are necessary to determine if the drug is effective against different types of breast and other cancers, and its interaction with anti-cancer drugs.........


Ref : http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0013831

Tuesday, November 16, 2010

Regulus present advancements in microRNA platform at Oligonucleotide Therapeutics Society meeting

Recently, I did write an article regarding the future of antisense drugs for BlogNotions (wherein I did mention about the Regulus plans for mRNA platform)...


Regulus present advancements in microRNA platform at Oligonucleotide Therapeutics Society meeting

Tuesday, November 9, 2010

Chillies for diabetes: Study

In continuation of my update on diabetes and its treatment,  I find the following study interesting.  In fact, I had a blog article  , where in the authors claim that Capsaicin may cause weight loss and I think these findings are of great significance........


 

Sunday, November 7, 2010

FDA approves Pradaxa to prevent stroke in people with atrial fibrillation....

We knew that, Dabigatran (see structure, Pradaxa in Europe and USA, Pradax in Canada) is an anticoagulant from the class of the direct thrombin inhibitors. It is being studied for various clinical indications and in many cases it offers an alternative to warfarin as the preferred orally administered blood thinner since it does not require prothrombin time monitoring while offering similar results in terms of efficacy. It was developed by the pharmaceutical company Boehringer Ingelheim. Though it was approved in Europe in 2008, now FDA has approved the drug in October 2010 for the prevention of stroke and blood clots in patients with abnormal heart rhythm (atrial fibrillation).

Pradaxa is an anticoagulant that acts by inhibiting thrombin, an enzyme in the blood that is involved in blood clotting. The safety and efficacy of Pradaxa were studied in a clinical trial comparing Pradaxa with the anticoagulant warfarin. In the trial, patients taking Pradaxa had fewer strokes than those who took warfarin.

 "Unlike warfarin, which requires patients to undergo periodic monitoring with blood tests, such monitoring is not necessary for Pradaxa," Dr. Norman Stockbridge(director of the Division of Cardiovascular and Renal Products in the FDA's ) says.

Pradaxa, manufactured by Boehringer Ingelheim Pharmaceuticals Inc. of Ridgefield, Conn., will be available in 75 milligram and 150 milligram capsules....

Ref : http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm230241.htm

Saturday, November 6, 2010

Study finds anti-obesity drug reduces brain’s response to appetizing foods

Sibutramine (usually in the form of the hydrochloride monohydrate salt) is an oral anorexiant. Until recently it was marketed and prescribed as an adjunct in the treatment of exogenous obesity along with diet and exercise. It has been associated with increased cardiovascular events and strokes and has been withdrawn from the market in the US, EU, AU etc. 

Sibutramine is a centrally-acting serotonin-norepinephrine reuptake inhibitor structurally related to amphetamines, although its mechanism of action is distinct.


Now, researchers lead by Prof. Paul Fletcher at the University of Cambridge discovered that the anti-obesity drug sibutramine reduced brain responses in two regions of the brain, the hypothalamus and the amygdala, both of which are known to be important in appetite control and eating behavior.

Using functional magnetic resonance imaging (fMRI), the researchers measured brain activity while obese volunteers viewed pictures of appetising high-calorie foods - like chocolate cake - or pictures of low-calorie foods - like broccoli. The brain scanning was carried out both after two weeks of treatment with the anti-obesity drug, sibutramine (see structure above), and two weeks of placebo treatment. 

On placebo, it was shown that simply seeing pictures of appetising foods caused greater activation of many regions of the brain that are known to be important for reward processing. On sibutramine, however, they found that the anti-obesity drug reduced brain responses to the appetising foods in two regions of the volunteers' brain - the hypothalamus and the amygdala. These two regions are known to be important in appetite control and eating behaviour. Additionally, people who had the greatest reduction of brain activation following drug treatment tended to eat less and to lose more weight.
I quote....
"The most exciting aspect of these results is that they help us to see that brain and behaviour are fundamental to understanding and treating obesity. Simply because obesity involves major changes in body weight and body composition, it is easy to imagine that it is entirely 'a body problem'. These results remind us that the major cause of obesity in the West is over-eating, and this behaviour is regulated by reward and satiety processing circuits in the brain." 

Ref : Paul C. Fletcher et. al., The Journal of Neuroscience, October 27, 2010

Effective treatment for brain cancer in daffodils.............

We know that, Daffodil is a common English name, sometimes used now for all varieties of Narcissus genus, and is the chief common name of horticultural prevalence used by the American Daffodil Society.



Its use in medicinal use has been reported, in kampo (traditional Japanese medicine - wounds were treated with narcissus root and wheat flour paste), listed in De Medicina (among medical herbs, described as emollient, erodent, and "powerful to disperse whatever has collected in any part of the body). However in one scientific study, the ethanol extract of the bulbs was found effective in one mouse model of nociception, para-benzoquinone induced abdominal constriction, but not in another, the hot plate test.
Now researchers lead by Robert Kiss from Institute of Pharmacy at the Universit- Libre de Bruxelles in Brussels, Belgium, have come up with an interesting findings i.e., a natural compound found in daffodil bulbs, called narciclasine (see structure below) , may be a powerful therapeutic against biologically aggressive forms of human brain cancers.
To make this discovery, Kiss and colleagues used computer-assisted techniques to identify targets for narciclasine in cancer cells. The strongest potential candidate to emerge was the eEF1A elongation factor. Researchers then grafted human melanoma brain metastatic cells into the brains of genetically altered mice. Results showed that the injected mice survived significantly longer when treated with narciclasine than those mice left untreated. The researchers believe that narciclasine selectively inhibits the proliferation of very aggressive cancer cells, while avoiding adverse effects on normal cells. Narciclasine could be used in the near future to combat brain cancers, including gliomas, and metastases such as melanoma brain metastases.....