Showing posts sorted by date for query metformin. Sort by relevance Show all posts
Showing posts sorted by date for query metformin. Sort by relevance Show all posts

Monday, October 3, 2016

Coffee, Wine Good for Healthy Gut, Sodas May Be Bad

The food you eat and the medicines you take can alter your gut bacteria in ways that either help or harm your health, two new studies suggest.
Foods like fruits, vegetables, coffee, tea, wine, yogurt and buttermilk can increase the diversity of bacteria in a person's intestines. And that diversity can help ward off illness, said Dr. Jingyuan Fu, senior author of one of the studies.
"It is believed that higher diversity and richness [in gut bacteria] is beneficial," explained Fu. She is an associate professor of genetics at the University of Groningen in the Netherlands.
On the other hand, foods containing loads of simple carbohydrates appear to reduce bacterial diversity in the gut, Fu and colleagues found. These include high-fat whole milk and sugar-sweetened soda.
In addition, medications can also play a part in the makeup of your gut bacteria. Antibiotics, the diabetes drug metformin and antacids can cut down on gut bacterial diversity, the researchers found. Smoking and heart attacks also can have a negative effect, the team said.
Each person's intestines contain trillions of microorganisms, which doctors refer to as the "gut microbiome," said Dr. David Johnson. He is chief of gastroenterology at Eastern Virginia Medical School in Norfolk, Va., and a past president of the American College of Gastroenterology.
The gut microbiome plays an essential but little-understood role in human health, said Johnson, who was not involved with the new studies.
"It's the largest immune system in the body," Johnson explained. "These bacteria have a very dramatic and prominent role in determining health and disease."
To study the effect of lifestyle on the gut microbiome, Fu and her colleagues collected stool samples from more than 1,100 people living in the northern Netherlands.
The samples were used to analyze the DNA of the bacteria and other organisms that live in the gut. In addition to stools, the study collected information on the participants' diets, medicine use and health.
In the second study, researchers with the Flemish Gut Flora Project performed a similar analysis on stool samples taken from 5,000 volunteers in Belgium.
Both studies concluded that diet has a profound effect on the diversity of gut bacteria, although, Fu said, the "underlying theories of these dietary factors remain largely unknown."
Johnson added that medicines can have the same effect, and antibiotics actually can kill off some important strains of gut bacteria. "One dose of an antibiotic may disrupt your gut bacteria for a year," he said.
Both sets of researchers emphasized that their studies only help explain a fraction of gut bacteria variation -- roughly 18 percent for the Netherlands study, and about 7 percent for the Flemish study.
However, the findings from the two groups overlapped about 80 percent of the time, indicating that they are on the right track, the researchers said.
The Belgian researchers estimated that over 40,000 human samples will be needed to capture a complete picture of gut bacteria diversity.
Johnson noted that other research has shown that poor sleep, obesity, diabetes and the use of artificial sweeteners also can interfere with gut bacteria.
"The general rule is a balanced diet with high fiber and low carbs tends to drive a better gut health overall," he said.
According to Fu, once researchers have a clearer understanding of the gut microbiome and its effects on health, doctors could be able to help prevent or heal illness by reading or influencing the bacteria within people's bodies.
"The personalized microbiome may assist in personalized nutrition, personalized medicine, disease risk stratification and treatment decision-making," she said.
Both studies were published in the April 29 issue of the journal Science.

Tuesday, August 16, 2016

New clinical study to evaluate inexpensive drug to prevent type 1 diabetes



Metformin.svg 



In continuation of my update on metformin

New trial aims to prevent type 1 diabetes
A clinical study evaluating a new hypothesis that an inexpensive drug with a simple treatment regimen can prevent type 1 diabetes will be launched in Dundee tomorrow.

The autoimmune diabetes Accelerator Prevention Trial (adAPT) is led by Professor Terence Wilkin, of the University of Exeter Medical School, with support from colleagues at the University of Dundee and NHS Tayside. It will be launched at Ninewells Hospital, Dundee, on Tuesday, 19th April.

Initial funding of $1.7 million is being provided by JDRF, the leading global organisation backing type 1 diabetes research. The study aims to contact all 6,400 families in Scotland affected by the condition, with a view to expanding into England at a later date. Children aged 5 to 16 who have a sibling or parent with type 1 diabetes will be invited for a blood test to establish whether they are at high risk of developing the disease. If so, they will be invited to take part in the trial.

Researchers will then examine the impact of administering metformin, the world's most commonly prescribed diabetes medicine, to young people in the high-risk category. If successful, the large-scale trial could explain why the incidence of type 1 diabetes has risen five-fold in the last 40 years, and provide a means of preventing it.

Researchers have previously hypothesised that type 1 diabetes is an autoimmune disease caused by a faulty immune system which attacks and destroys insulin-producing beta cells in the pancreas. Clinical trials have tried drugs that supress the immune system to attempt to subdue the attack, but the results have so far been disappointing.

The Accelerator Prevention Trial is the first to test an alternative explanation for type 1 diabetes, and is based on the accelerator hypothesis, proposed in 2001 by Professor Wilkin.

This hypothesis theorises that autoimmunity occurs as a response to damaged beta cells. It believes that beta cells, stressed by being made to work too hard in a modern environment, send out signals that switch on the immune system. adAPT will test whether metformin, which is known to protect the beta cells from stress, can stop the immune response that goes on to destroy them.

Professor Wilkin said, "We still have no means of preventing type 1 diabetes, which, at all ages, results from insufficient insulin. We all lose beta cells over the course of our lives, but most of us have enough for normal function.

"However, if the rate of beta cell loss is accelerated, type 1 diabetes develops, and the faster the loss, the younger the onset of the condition. The accelerator hypothesis talks of fast and slow type 1 diabetes - beta cell loss which progresses at different rates in different people, and appears at different ages as a result."

Thursday, September 10, 2015

Metformin can reduce risk of open-angle glaucoma in people with diabetes



Metformin.svg


In continuation of my update on metformin

Taking the medication metformin hydrochloride was associated with reduced risk of developing the sight-threatening disease open-angle glaucoma in people with diabetes, according to a study published online by JAMA Ophthalmology.

Medications that mimic caloric restriction such as metformin can reduce the risk of some late age-onset disease. It is unknown whether these caloric mimetic drugs affect the risk of age-associated eye diseases such as macular degeneration, diabetic retinopathy, cataract or glaucoma.

Researcher Julia E. Richards, Ph.D., of the University of Michigan, Ann Arbor, and co-authors examined metformin use and the risk of open-angle glaucoma (OAG) using data from a large U.S. managed care network from 2001 through 2010.

Of 150,016 patients with diabetes, 5,893 (3.9 percent) developed OAG. Throughout the study period, 60,214 patients (40.1 percent) filled at least one metformin prescription; 46,505 (31 percent) filled at least one sulfonylurea prescription; 35,707 (23.8 percent) filled at least one thiazolidinedione prescription; 3,663 (2.4 percent) filled at least one meglitinide prescription; and 33,948 (22.6 percent) filled at least one insulin prescription. Some patients filled prescriptions for multiple medications.

Wednesday, February 11, 2015

Diabetes drug can boost efficacy of TB medication without causing drug resistance

In continuation of my update on Metformin

A more effective treatment for tuberculosis (TB) could soon be available as scientists have discovered that Metformin (MET), a drug for treating diabetes, can also be used to boost the efficacy of TB medication without inducing drug resistance.

This discovery was made by a team of international scientists led by the Singapore Immunology Network (SIgN), a research institute under the Agency for Science, Technology and Research (A*STAR), Singapore.

TB is an air-borne infectious disease caused by a bacterium called Mycobacterium tuberculosis (Mtb), which often infects the lungs. Even though drugs are available to treat the disease, TB continues to be a major threat to public health, killing close to 1.5 million people every year .

Conventional drugs used to treat TB usually adopt a pathogen-targeted strategy which attacks and kills bacteria directly. This approach has caused Mtb strains to acquire drug resistance, making existing treatments become increasingly ineffective and resulting in a pressing need to design new therapeutic strategies for the disease.

MET as an adjunct treatment for TB

The team of scientists led by SIgN began searching for drugs that could control Mtb replication indirectly. They screened FDA-approved drugs and identified MET, an old anti-diabetic drug that could defend Mtb invasion without targeting the bacteria directly. Instead, MET targets the host cells to trigger the production of a chemical which then damages Mtb and stops its replication. Such indirect, host-targeted approach is less likely to engender drug resistance. The team also discovered that MET improves the efficacy of conventional anti-TB drugs when used in combination with them.

The scientists then validated the findings with patient data provided by the Tuberculosis Clinical Unit at the Tan Tock Seng Hospital, and consequently verified that the use of MET is indeed associated with improved TB control and decreased disease severity. This anti-diabetic drug is therefore a promising adjunctive therapy that could enhance the effectiveness of existing TB treatments. As it is a drug that is currently in use, another benefit of using MET as an adjunct treatment for TB is that it is likely to shorten the time required for clinical trials.


Monday, June 9, 2014

Isis Pharmaceuticals reports positive data from ISIS-GCGRRx Phase 2 study in patients with type 2 diabetes

Isis Pharmaceuticals, Inc.  announced positive data from a Phase 2 study of ISIS-GCGRRx in patients with type 2 diabetes uncontrolled on stable metformin therapy. In this study, patients in the per protocol efficacy population treated with ISIS-GCGRRx achieved statistically significant reductions in measures of glucose control. The absolute mean reductions in hemoglobin A1c (HbA1c) were greater than 2 percentage points>Rx also experienced increased plasma GLP-1 levels. Isis will present additional detail from this study as a late-breaking abstract program at the American Diabetes Association 74th Scientific Sessions. In conjunction, Isis will host an investor event on June 15, 2014 at 7:00 a.m PT. 

"These results reported today represent the potential for a major advance in diabetes therapeutics. ISIS-GCGRRx employs a unique mechanism to treat patients with type 2 diabetes. It is well known that as type 2 diabetes progresses, dysregulated glucagon action becomes a more significant contributor to the disease. The ability of ISIS-GCGRRxto improve glycemic control without causing any clinically significant increases in blood pressure or lipids offers a significant advantage for both patients and treating physicians," said Robert Henry, M.D., chief, VA endocrinology & metabolism and professor of medicine in residence, University of California, San Diego School of Medicine. "The additional effect on increasing GLP-1 means that ISIS-GCGRRx treatment could help to preserve pancreatic function and enhance insulin secretion in diabetic patients."

Saturday, May 31, 2014

Combination of metformin and rapamycin shows potential in treating aging and related diseases

A proven approach to slow the aging process is dietary restriction, but new research in the Linus Pauling Institute at Oregon State University helps explain the action of a drug that appears to mimic that process - rapamycin.

Rapamycin, an antibiotic and immunosuppressant approved for use about 15 years ago, has drawn extensive interest for its apparent ability - at least in laboratory animal tests - to emulate the ability of dietary restriction in helping animals to live both longer and healthier.

However, this medication has some drawbacks, including an increase in insulin resistance that could set the stage for diabetes. The new findings, published in the Journals of Gerontology: Biological Sciences, help to explain why that happens, and what could be done to address it.
They suggest that a combination of rapamycin and another drug to offset that increase in insulin resistance might provide the benefits of this medication without the unwanted side effect.

"This could be an important advance if it helps us find a way to gain the apparent benefits of rapamycin without increasing insulin resistance," said Viviana Perez, an assistant professor in the Department of Biochemistry and Biophysics in the OSU College of Science.

"It could provide a way not only to increase lifespan but to address some age-related diseases and improve general health," Perez said. "We might find a way for people not only to live longer, but to live better and with a higher quality of life."

Age-related diseases include many of the degenerative diseases that affect billions of people around the world and are among the leading causes of death: cardiovascular disease, diabetes, Alzheimer's disease and cancer.

Monday, May 26, 2014

Research explains action of drug that may slow aging, related disease

Rapamycin, an antibiotic and immunosuppressant approved for use about 15 years ago, has drawn extensive interest for its apparent ability at least in laboratory animal tests -- to emulate the ability of dietary restriction in helping animals to live both longer and healthier.

However, this medication has some drawbacks, including an increase in insulin resistance that could set the stage for diabetes. The new findings, published in the Journals of Gerontology: Biological Sciences, help to explain why that happens, and what could be done to address it. They suggest that a combination of rapamycin and another drug to offset that increase in insulin resistance might provide the benefits of this medication without the unwanted side effect.

"This could be an important advance if it helps us find a way to gain the apparent benefits of rapamycin without increasing insulin resistance," said Viviana Perez, an assistant professor in the Department of Biochemistry and Biophysics in the OSU College of Science.

"It could provide a way not only to increase lifespan but to address some age-related diseases and improve general health," Perez said. "We might find a way for people not only to live longer, but to live better and with a higher quality of life."

Age-related diseases include many of the degenerative diseases that affect billions of people around the world and are among the leading causes of death: cardiovascular disease, diabetes, Alzheimer's disease and cancer. Laboratory mice that have received rapamycin have reduced the age-dependent decline in spontaneous activity, demonstrated more fitness, improved cognition and cardiovascular health, had less cancer and lived substantially longer than mice fed a normal diet.

Rapamycin, first discovered from the soils of Easter Island, or Rapa Nui in the South Pacific Ocean, is primarily used as an immunosuppressant to prevent rejection of organs and tissues. In recent years it was also observed that it can function as a metabolic "signaler" that inhibits a biological pathway found in almost all higher life forms --     the  ability to  sense when  food  has
been eaten, energy is available and it's okay for cell proliferation, protein synthesis and growth to proceed.

Called mTOR in mammals, for the term "mammalian target of rapamycin," this pathway has a critical evolutionary value -- it helps an organism avoid too much cellular expansion and growth when energy supplies are insufficient. That helps explain why some form of the pathway has been conserved across such a multitude of species, from yeast to fish to humans.

"Dietary restriction is one of the few interventions that inhibits this mTOR pathway," Perez said. "And a restricted diet in laboratory animals has been shown to increase their lifespan about 25-30 percent. Human groups who eat fewer calories, such as some Asian cultures, also live longer."
Aside from a food intake in laboratory mice that's about 40 percent fewer calories than normal, however, it's been found that another way to activate this pathway is with rapamycin, which appears to have a significant impact even when used late in life. Some human clinical trials are already underway exploring this potential.

A big drawback to long-term use of rapamycin, however, is the increase in insulin resistance, observed in both humans and laboratory animals. The new research identified why that is happening. It found that both dietary restriction and rapamycin inhibited lipid synthesis, but only dietary restriction increased the oxidation of those lipids in order to produce energy.

Rapamycin, by contrast, allowed a buildup of fatty acids and eventually an increase in insulin resistance, which in humans can lead to diabetes. However, the drug metformin can address that concern, and is already given to some diabetic patients to increase lipid oxidation. In lab tests, the combined use of rapamycin and metformin prevented the unwanted side effect.

"If proven true, then combined use of metformin and rapamycin for treating aging and age-associated diseases in humans may be possible," the researchers wrote in their conclusion.

This work was supported by the National Institutes of Health. Collaborators included researchers from Oklahoma University Health Science Center, the Oklahoma City VA Medical Center, University of Michigan-Flint, and South Texas Veterans Health Care System.

"There's still substantial work to do, and it may not be realistic to expect with humans what we have been able to accomplish with laboratory animals," Perez said. "People don't live in a cage and eat only the exact diet they are given. 

Nonetheless, the potential of this work is exciting."





























































Friday, November 29, 2013

Cinnamon May Help Ease Common Cause of Infertility, Study Says...

A small study by researchers from Columbia University Medical Center in New York City found that women with polycystic ovary syndrome who took inexpensive daily cinnamon supplements experienced nearly twice the menstrual cycles over a six-month period as women with the syndrome given an inactive placebo. Two of the women in the treated group reported spontaneous pregnancies during the trial.
"There is a lot of interest in homeopathic or natural remedies for this condition," said study author Dr. Daniel Kort, a postdoctoral fellow in reproductive endocrinology at the medical center. "This may be something we can do using a totally natural substance that can help a large group of patients."
The study was scheduled for presentation Wednesday at a meeting of the International Federation of Fertility Societies and American Society for Reproductive Medicine in Boston.
An estimated 5 percent to 10 percent of women of childbearing age have polycystic ovary syndrome, with up to 5 million Americans affected. Polycystic ovary syndrome, which involves many of the body's systems, is thought to be caused by insensitivity to the hormone insulin. Typical symptoms include menstrual irregularity, infertility, acne, excess hair growth on the face or body, and thinning scalp hair.
Treatment for polycystic ovary syndrome currently includes weight loss, ovulation-inducing drugs such as clomiphene (brand name Clomid) and diabetes medications such as metformin, said Dr. Avner Hershlag, chief of the Center for Human Reproduction at North Shore University Hospital in Manhasset, N.Y.
Kort said that it's not yet clear exactly why cinnamon may work to regulate menstrual cycles in those with polycystic ovary syndrome, but it may improve the body's ability to process glucose and insulin. Prior research among diabetic patients suggested the spice can reduce insulin resistance.
Of the 16 patients who completed Kort's trial, 11 were given daily 1,500-milligram cinnamon supplements and five were given placebo pills. Diet and activity levels were monitored, and patients completed monthly menstrual calendars.
After six months, women receiving cinnamon had significant improvement in menstrual cycle regularity, having an average of nearly four menstrual periods over that time compared to an average of 2.2 periods among the placebo group. Two women reported spontaneous pregnancies after three months of cinnamon treatment, meaning they became pregnant without additional help.
Polycystic ovary syndrome "is one of the most common causes why women don't have regular menstrual cycles," Kort said. "But the clinical consequences later in life are truly great from an increased risk of diabetes and glucose intolerance to endometrial cancer. Many women can go their whole lives without regular menstrual cycles, and it doesn't necessarily bother them until they want to have children."
The 1,500-milligram cinnamon dose was chosen for this trial because it was between the 1,000 to 2,000 mg daily that seemed to have metabolic effects on diabetic patients in earlier research, Kort said. But all doses in that range are cheaply obtained, costing pennies per capsule.
"Compared to most medical therapies these days, the cost is very small," he said.
Although the study suggests a link between cinnamon and improvement of polycystic ovary syndrome, it doesn't establish a direct cause-and-effect relationship.
Still, Hershlag called the study "welcome and interesting" and said he sees no reason women with polycystic ovary syndrome shouldn't use more cinnamon in their food or take cinnamon supplements.
"Any work that's something nutritional in nature and seems to affect the abnormal physiology of polycystic ovaries is welcome," Hershlag said. "If they want to spice up their life and take it, that's fine , but I think the best thing to do when you have polycystic ovaries is to be under the control of a physician."

Tuesday, November 5, 2013

Metformin could serve as radiosensitizer to treat patients with stage III non-small cell lung cancer

In continuation of my update on metformin

Treating aggressive lung cancer with the diabetes drug metformin along with radiation and chemotherapy may slow tumor growth and recurrence, suggests new preliminary findings from researchers at the Perelman School of Medicine at the University of Pennsylvania being presented during an oral abstract session October 28 at the 15th World Conference on Lung Cancer.

The pre clinical and clinical results, which have set the stage for a first-of-its-kind prospective study, point to metformin as an effective radiosensitizer-a drug that makes tumor cells more sensitive to radiation therapy-to treat stage III non-small cell lung cancer (NSCLC). Because of poor local response and five-year survival rates around 15 percent in late-stage NSCLC patients, well-tolerated, combination therapies are greatly needed.

The abstract is being presented by Ildiko Csiki, MD, PhD, an assistant professor of Radiation Oncology at Penn's Abramson Cancer Center.

Metformin, the most-widely used drug for type-2 diabetes, has been shown to have anti-cancer effects on a number of cancers, including prostate and colon. It activates AMP-related pathways, leading to inactivation of mTOR and suppression of its downstream effectors, a crucial signaling pathway for proliferation and survival of cancer. However, little data exists to support its role in NSCLC. And its role as a radiosensitizer in lung cancer is even less understood.

Saturday, May 18, 2013

Popular diabetes drug does not improve survival rates after cancer

In continuation of my update on metformin

Despite previous scientific studies that suggest diabetes drug metformin has anti-cancer properties, a new, first-of-its-kind study from Women's College Hospital has found the drug may not actually improve survival rates after breast cancer in certain patients.

The study, published in the journal Diabetes Care, failed to show an improved survival rate in older breast cancer patients with diabetes taking the drug metformin, a first-line treatment for diabetes. However, the authors caution further research is necessary to validate the study's findings.


"Metformin is a drug commonly used by diabetic patients to control the amount of glucose in their blood," said the study's lead author Dr. Iliana Lega, a research fellow at Women's College Research Institute. "Although existing scientific literature suggests that drug may prevent new cancers and death from breast cancer, our study found the drug did not significantly impact survival rates in our patients."

Scientific research has found metformin is associated with an up to 30 per cent reduction in new cancers and a reduction in tumour growth in non-diabetic breast cancer patients treated with the drug, Dr. Lega notes in the study.

To test the drug's anti-cancer properties, the authors examined 2,361 women, aged 66 or older who were treated with the drug and diagnosed with breast cancer between April 1, 1997 and March 31, 2008. The women were followed from their date of breast cancer diagnosis until their death or until March 30, 2010. The researchers found no significant statistical correlation between cumulative use of metformin and death from all causes or a significant reduction in deaths due to breast cancer.


"What makes our study so unique is that while the effects of metformin have been well documented, previous research has not examined the cumulative effects of the drug on patients, particularly breast cancer patients with diabetes," Dr. Lega said. "This is important given that diabetic patients may switch drugs over the course of their treatment."

The authors note a lack of data on body mass index, breast cancer stage and a short followup period for breast-cancer specific deaths, limit interpretation of their findings. Further research is necessary in a younger population of patients with breast cancer and diabetes.


"Understanding the effects of metformin on breast cancer patients is critical in helping address the gap in cancer outcomes in patients with and without diabetes," she added. "The findings will help physicians inform treatment plans for patients with diabetes."
Ref : http://care.diabetesjournals.org/content/early/2013/04/30/dc12-2535


Friday, April 19, 2013

Takeda Receives FDA Approval for Kazano (alogliptin and metformin) for Type 2 Diabetes

Takeda Pharmaceuticals U.S.A., Inc. today announced that the United States (U.S.) Food and Drug Administration (FDA) has approved Kazano (alogliptin and metformin HCl) for the treatment of type 2 diabetes in adults as adjuncts to diet and exercise. 

Kazano contains alogliptin, a dipeptidyl peptidase-4 inhibitor (DPP-4i) that is designed to slow the inactivation of incretin hormones GLP-1 (glucagon-like peptide-1) and GIP (glucose-dependent insulinotropic peptide). Kazano combines alogliptin with metformin HCl, a widely used anti-diabetes medication, in a single tablet.
The most common adverse events (greater than or equal to 4%) reported with alogliptin include nasopharyngitis, headache and upper respiratory tract infection. Common adverse events (greater than or equal to 4%) reported with Kazano include upper respiratory tract infection, nasopharyngitis, diarrhea, hypertension, headache, back pain and urinary tract infection.
Takeda is committed to providing type 2 diabetes patients with treatment options that help address their needs, and is planning to commercially launch Kazano in the summer of 2013.
Takeda's consolidated financial statements for the 2012 fiscal year will not be impacted by the FDA approvals.


Saturday, February 9, 2013

Phenformin decreases size of lung tumors and increases survival in mice

In continuation of my update on metformin and phenformin
In a new study in the journal Cancer Cell, Shaw and a team of scientists at the Salk Institute for Biological Studies found that phenformin, a derivative of the widely-used diabetes drug metformin, decreased the size of lung tumors in mice and increased the animals' survival. The findings may give hope to the nearly 30 percent of patients with non-small cell lung cancer (NSCLC) whose tumors lack LKB1 (also called STK11).

The LKB1 gene turns on a metabolic enzyme called AMPK when energy levels of ATP, molecules that store the energy we need for just about everything we do, run low in cells. In a previous study, Shaw, an associate professor in Salk's Molecular and Cell Biology Laboratory and researcher in the Institute's new Helmsley Center for Genomic Medicine, demonstrated that cells lacking a normal copy of the LKB1 gene fail to activate AMPK in response to low energy levels. LKB1-dependent activation of AMPK serves as a low-energy checkpoint in the cell. Cells that lack LKB1 are unable to sense such metabolic stress and initiate the process to restore their ATP levels following a metabolic change. As a result, these LKB1-mutant cells run out of cellular energy and undergo apoptosis, or programmed cell death, whereas cells with intact LKB1 are alerted to the crisis and re-correct their metabolism.


"The driving idea behind the research is knowing that AMPK serves as a sensor for low energy loss in cells and that LKB1-deficient cells lack the ability to activate AMPK and sense energy loss," says David Shackelford, a postdoctoral researcher at Salk who spearheaded the study in Shaw's lab and is now an assistant professor at UCLA's David Geffen School of Medicine.


That led Shaw and his team to a class of drugs called biguanides, which lower cellular energy levels by attacking the power stations of the cell, called mitochondria. Metformin and phenformin both inhibit mitochondria; however, phenformin is nearly 50 times as potent as metformin. In the study, the researchers tested phenformin as a chemotherapy agent in genetically-engineered mice lacking LKB1 and which had advanced stage lung tumors. After three weeks of treatment, Shaw and his team saw a modest reduction in tumor burden in the mice.

Ref : https://www.cell.com/cancer-cell/abstract/S1535-6108%2812%2900518-1

Thursday, January 17, 2013

Biguanide mechanism discovered

For fifty years, one of the few classes of therapeutics effective in reducing glucose production has been the biguanides, which include phenformin and metformin, the latter the most frequently prescribed drug for type-2 diabetes. Nonetheless, the mechanism of action of biguanides remains imperfectly understood. The suggestion a decade ago that metformin reduces glucose synthesis through activation of the enzyme AMP-activated protein kinase (AMPK) has recently been challenged by genetic loss-of-function experiments. Here we provide a novel mechanism by which metformin antagonizes the action of glucagon, thus reducing fasting glucose levels. In mouse hepatocytes, metformin leads to the accumulation of AMP and related nucleotides, which inhibit adenylate cyclase, reduce levels of cyclic AMP and protein kinase A (PKA) activity, abrogate phosphorylation of critical protein targets of PKA, and block glucagon-dependent glucose output from hepatocytes. These data support a mechanism of action for metformin involving antagonism of glucagon, and suggest an approach for the development of antidiabetic drugs....

Friday, November 16, 2012

Metformin more effective than sulfonylurea in controlling type 2 diabetes

In continuation of my update on Metformin


A Vanderbilt study examining the impact of the two most commonly prescribed oraldiabetes medications on the risk for heart attack, stroke and death has found the drug metformin has benefits over sulfonylurea drugs.

It was important to examine the cardiovascular impact of the more commonly used diabetes drugs after recent controversy surrounded another diabetes medication, rosiglitazone, because it was associated with an increased cardiac risk, said lead author, Christianne L. Roumie, M.D., MPH, assistant professor of Internal Medicine and Pediatrics. Smaller studies pointed to a potential advantage of taking the drug metformin but this study confirms this in a large population.

"We demonstrated that for every 1,000 patients who are using metformin for a year there are two fewer heart attacks, strokes or deaths compared with patients who use sulfonylureas. I think this reinforces the recommendation that metformin should be used as the first medication to treat diabetes," Roumie said.

The researchers looked at the charts of more than 250,000 veterans receiving care in Veterans Health Administration hospitals throughout the United States.



Tuesday, October 30, 2012

Dulaglutide Fares Well in New Trials


Eli Lilly and Co.'s potential once-weekly treatment for type 2 diabetes fared better than three other drugs in lowering blood sugar levels, according to initial results from some late-stage research.


The Indianapolis drugmaker said that two doses of its injectable drug dulaglutide (see structure) delivered statistically superior reductions in blood sugar levels when compared to twice-daily injections of exenatide and the oral treatments metformin and sitagliptin. Lilly will present more details from the studies at scientific meetings next year and in 2014.



Lilly said it will submit the drug to regulators for approval next year. It said timing in the United States will depend on the completion of Food and Drug Administration requirements for an assessment of the drug's cardiovascular risk.

Saturday, August 18, 2012

Dapagliflozin more effective than sitagliptin for adult patients with type 2 diabetes


In continuation of my update on dapagliflozin and sitagliptin

The study also demonstrated significant reductions in total body weight and fasting plasma glucose (FPG) levels in patients taking dapagliflozin added to sitagliptin (with or without metformin), with results maintained throughout the duration of the study extension.

Patients were actively questioned at each study visit for signs, symptoms or events suggestive of genital infections and urinary tract infections. These events were more frequent with the dapagliflozin treatment group compared to the placebo treatment group, and were generally mild to moderate in intensity, with most patients responding to standard treatment.
"Type 2 diabetes is a complex disease that often requires patients to take multiple treatments to control their blood sugar levels, with DPP4 inhibitors being some of the most widely prescribed therapies," said Serge Jabbour, M.D., Division Director of Endocrinology, Thomas Jefferson University. "In this study, dapagliflozin, in addition to diet and exercise, resulted in reduced blood sugar levels when added to sitagliptin, a DPP4 inhibitor. These findings add to our understanding of the effect of dapagliflozin in combination with commonly prescribed type 2 diabetes treatments."


Bristol-Myers Squibb Company and AstraZeneca today announced results from a Phase 3 clinical study that showed the investigational compound dapagliflozin 10 mg demonstrated significant reductions in blood sugar levels (glycosylated hemoglobin levels, or HbA1c) compared with placebo at 24 weeks when either agent was added to existing sitagliptin therapy (with or without metformin) in adult patients with type 2 diabetes.

Monday, June 11, 2012

Lilly, Boehringer Ingelheim announce results from linagliptin Phase III trial on T2D

 In continuation of my update on Linagliptin



Results of the one Phase III study presented (Poster No. 999-P) showed that linagliptin was effective as an add-on therapy to basal insulin alone or in combination with metformin and/or pioglitazone in reducing blood glucose levels in adult patients with T2D, when compared to placebo as an add-on to these background therapies. Linagliptin demonstrated a placebo-adjusted reduction in HbA1c of 0.65% (p<0.0001) from a baseline HbA1c of 8.3% at 24 weeks without weight gain or additional risk of hypoglycaemia.  HbA1c is measured in people with diabetes to provide an index of blood glucose control for the previous two to three months. 

A post-hoc analysis from a second Phase III trial (Poster No. 1044-P) found that in hyperglycaemic patients on a background of metformin randomised to add linagliptin or glimepiride, a greater proportion of patients taking linagliptin achieved target HbA1c <7% without weight gain and/or hypoglycaemia than those taking glimepiride after 104 weeks (linagliptin 54% versus glimepiride 23%) while comparably improving blood glucose levels.

Sunday, June 3, 2012

2 Drugs Better Than 1 to Treat Youth With Type 2 Diabetes

2 Drugs Better Than 1 to Treat Youth With Type 2 DiabetesA combination of two diabetes drugs, metformin and rosiglitazone, was more effective in treating youth with recent-onset type 2 diabetes than metformin alone, a study funded by the National Institutes of Health (NIH) has found. Adding an intensive lifestyle intervention to metformin provided no more benefit than metformin therapy alone.

The study also found that metformin therapy alone was not an effective treatment for many of these youth. In fact, metformin had a much higher failure rate in study participants than has been reported in studies of adults treated with metformin alone.
The study found that treatment with metformin alone was inadequate for maintaining acceptable, long-term, blood glucose control in 51.7 percent of youth over an average follow-up of 46 months. The failure rate was 38.6 percent in the metformin and rosiglitazone group, a 25.3 percent reduction from metformin alone. In the metformin plus lifestyle group the failure rate was 46.6 percent.

Friday, May 18, 2012

Two-Drug Therapy Helped Kids With Type 2 Diabetes

Two-Drug Therapy Helped Kids With Type 2 Diabetes:  Children with type 2 diabetes may achieve better blood sugar control with a combination of two drugs, metformin and Avandia, than with metformin alone, a new study suggests. However, Avandia (rosiglitazone) was recently linked...

Thursday, May 10, 2012

Two drugs better than one to treat youth with type 2 diabetes, study suggests

Two drugs better than one to treat youth with type 2 diabetes, study suggests: A combination of two diabetes drugs, metformin and rosiglitazone, was more effective in treating youth with recent-onset type 2 diabetes than metformin alone, a new study has found. Adding an intensive lifestyle intervention to metformin provided no more benefit than metformin therapy alone.