Showing posts sorted by relevance for query MRSA. Sort by date Show all posts
Showing posts sorted by relevance for query MRSA. Sort by date Show all posts

Friday, December 30, 2016

Allergan Receives FDA Approval of Teflaro (ceftaroline fosamil) for Pediatric Patients

Ceftaroline fosamil2DCSD.svg

Allergan plc, a leading global pharmaceutical company,  announced the U.S. Food and Drug Administration (FDA) has approved the company's supplemental New Drug Application (sNDA) for Teflaro (ceftaroline fosamil), granting new indications for pediatric patients 2 months of age to less than 18 years of age with acute bacterial skin and skin structure infections (ABSSSI), including infections caused by methicillin-resistant Staphylococcus aureus (MRSA), and community-acquired bacterial pneumonia (CABP) caused by Streptococcus pneumoniae and other designated susceptible bacteria.

"The impact of ABSSSI and CABP among children is significant, as these infections often require hospitalization and are met with limited pediatric treatment options, particularly as resistance increases among the pathogens that cause these infections," said David Nicholson, Chief R&D Officer, Allergan. "These new indications are yet another testament to our ongoing research and development in anti-infectives to address the evolving challenges of serious infections. Importantly, it allows us to educate physicians on the data they need to prescribe Teflaro to appropriate pediatric patients in need of an option that is safe and effective against some of the most difficult-to-treat pathogens in ABSSSI and CABP."
ABSSSI and CABP are common causes of healthcare visits and hospitalizations among children. Studies show more than 70,000 hospitalizations for ABSSSI occur among children per year – a rate that has more than doubled over the past 13 years.1 A study conducted by the Centers for Disease Control and Prevention (CDC) also found children younger than 5 years of age accounted for 70 percent of children hospitalized for community-acquired pneumonia.
These new indications were approved based on results from clinical studies evaluating TEFLARO in pediatric patients (2 months to less than 18 years of age), including one active-controlled study in ABSSSI and two active-controlled studies in CABP. In the ABSSSI active-controlled study, the efficacy and safety of Teflaro was compared with vancomycin or cefazolin (each with optional aztreonam). In the CABP studies, Teflaro was compared with ceftriaxone. Use of Teflaro in pediatric patients 2 months to less than 18 years of age is supported by evidence from adequate and well-controlled studies of Teflaro in adults, as well as additional pharmacokinetic and safety data from pediatric trials.
The primary objective of the pediatric ABSSSI and CABP studies was to evaluate the safety and tolerability of Teflaro. These studies were not powered for comparative inferential efficacy analysis, and no efficacy endpoints were identified as primary.
To evaluate the treatment effect of Teflaro in the ABSSSI pediatric trial, an analysis was conducted in 159 patients with ABSSSI in the Modified Intent-to-Treat (MITT) population. This analysis evaluated responder rates based on achieving both cessation of lesion spread and absence of fever on Study Day 3. Patients treated with Teflaro showed a higher response at Study Day 3 versus the comparator group, with clinical response achieved in 80.4 percent (86/107) of patients treated with Teflaro and 75 percent (39/52) of patients in the comparator group, with a treatment difference of 5.4 percent (95 percent Confidence Interval [CI] -7.8, 20.3). Clinical cure rates at the test of cure (TOC) visit (8 to 15 days after the end of therapy) for the ABSSSI pediatric trial were 94.4 percent (101/107) for patients treated with Teflaro and 86.5 percent (45/52) for the comparator, with a treatment difference of 7.9 (95 percent CI -1.2, 20.2).
To evaluate the treatment effect of Teflaro in the CABP trial submitted for this pediatric filing, an analysis was conducted in 143 patients with CABP in the MITT population. This analysis evaluated responder rates at Study Day 4 based on achieving improvement in at least two out of seven symptoms (cough, dyspnea, chest pain, sputum production, chills, feeling of warmth/feverish and exercise intolerance or lethargy), and worsening in none of these symptoms. The clinical response at Study Day 4 was 69.2 percent (74/107) for patients treated with Teflaro and 66.7 percent (24/36) for the comparator, with a treatment difference of 2.5 percent (95 percent CI -13.9, 20.9). Clinical cure rates at TOC were 87.9 percent (94/107) for patients treated with TEFLARO and 88.9 percent (32/36) for the comparator, with a treatment difference of -1.0 (95 percent CI -11.5, 14.1).
Results from the clinical studies in pediatric patients showed that Teflaro demonstrated a safety profile that was compatible with treatment of ABSSSI and CABP at the clinical dosages studied. The safety findings were similar to those seen in the adult studies, and no safety concerns were identified beyond those already known to be cephalosporin class effects.
Teflaro is the first and only cephalosporin indicated in adults and pediatric patients 2 months of age and older for the treatment of ABSSSI and CABP due to designated susceptible pathogens that can be administered by intravenous (IV) infusion in five minutes to one hour.

Friday, August 2, 2013

Compound Anthracimycin, discovered at sea shows potency against anthrax

Fenical's team in the Scripps Center for Marine Biotechnology and Biomedicine, working in conjunction with San Diego-based Trius Therapeutics, used an analytical technique known as spectroscopy to decipher the unusual structure of a molecule from a microscopic species known as Streptomyces. Initial testing of the compound, which they named anthracimycin, revealed its potency as a killer of anthrax, the infectious disease often feared as a biological weapon, as well as MRSA.

"The real importance of this work is the fact that anthracimycin has a new and unique chemical structure," said Fenical, who added that the finding is a basic research discovery, which could lead to testing and development, and eventually a drug. "The discovery of truly new antibiotic compounds is quite rare. This discovery adds to many previous discoveries that show that marine bacteria are genetically and chemically unique."

The discovery provides the latest evidence that the oceans, and many of its unexplored regions, represent a vast resource for new materials that could one day treat a variety of diseases and illnesses. Fenical, a distinguished professor of oceanography and pharmaceutical science, helped found the field of marine biomedicine as a researcher at Scripps. He is a pioneer in discovering and identifying these novel compounds. His research has helped bring attention to the need for continued exploration of the ocean for science and society....

Wednesday, April 28, 2010

Rib-X Pharmaceuticals to demonstrate three presentations at Antibacterial Drug Development Conference

Rib-X Pharmaceuticals, Inc, is presenting three separate presentations at the Cambridge Healthtech Institute's 4th Annual Antibacterial Drug Development Conference, Resistance is Futile: The Challenge of Antibacterial Drug Development, April 27 - 28, in San Diego,

The presentations include overviews on radezolid (see below structure)  
delafloxacin  (see  right  structure) and the Company's proprietary platform for unlocking the bacterial ribosome, which has allowed for the design and generation of three novel classes of antibiotics that have been tuned for both multi-drug resistant Gram-negative and Gram-positive activity and have shown efficacy in multiple animal models of infection. 

Hope these results will  lead to relief from multi-drug–resistant infections (e.g., MRSA, uSSSI  and community acquired pneumonia,CAP).


Ref : http://www.rib-x.com/news_and_events/release_2010_04_12

Wednesday, May 10, 2017

New Antibiotic Discovered in the Nose

German researchers analyzed germs that inhabit the human body and found that about 30 percent of people had Staphylococcus aureus bacteria in their noses, but 70 percent did not, the Associated Press reported.
Those without S. aureus have another type of bacteria -- Staphyloccus lugdunensis -- in the nose that produces an antibiotic that keeps S. aureus in check, according to the study published online in the journal Nature.
Lugdunin is an antibiotic compound, a thiazolidine-containing cyclic peptide. It was isolated in 2016 after Staphylococcus lugdunensis was identified as the species of bacteria from the human nose that suppressed growth of species of disease-causing bacteria in that part of the humanmicrobiome. 
Ludgunin is a non-ribosomally synthesized cyclic peptide that inhibits growth of Staphylococcus aureus strain. The lugdunin genes are located on a 30-kbp operon. The genes lugA, lugB, lugC, and lugD encode four non-ribosomal peptide synthases, which are preceded by a putative regulator gene lugR
Lugdunin.svg
The scientists isolated this antibiotic, which they call lugdunin, and found that it was effective in treating mice whose skin was infected with S. aureus, the AP reported.
Lugdunin may offer a new way to fight antibiotic-resistant staph bacteria, one of the superbugs that pose a major health threat worldwide. Tests of lugdunin in humans have yet to be conducted.

Friday, February 24, 2012

Compound makes imipenem 16 times more effective against antibiotic-resistant K. pneumoniae

North Carolina State University chemists have created a compound (see structure above - when used in conjunction with the antibiotic imipenem (below structure), increased the antibiotic's effectiveness against the antibiotic-resistant K. pneumoniae 16-fold. The researchers believe that these early results are very promising for future treatments.)  that makes existing antibiotics 16 times more effective against recently discovered antibiotic-resistant "superbugs." 

These so-called superbugs are actually bacterial strains that produce an enzyme known as New Delhi metallo-β-lactamase (NDM-1). Bacteria that produce this enzyme are practically impervious to antibiotics because NDM-1renders certain antibiotics unable to bind with their bacterial targets. Since NDM-1 is found in Gram-negative bacteria like K. pneumoniae, which causes pneumonia, urinary tract, and other common hospital-acquired infections, it is of particular concern. NC State chemist Dr. Christian Melander had found that a compound derived from a class of molecules known as 2-aminoimidazoles "recharged" existing antibiotics, making them effective against Gram-positive antibiotic-resistant bacteria like the Staphylococcus strain MRSA. So Melander, Worthington and graduate students Cynthia Bunders and Catherine Reed set to work on a variety of the compound that might prove similarly effective against their Gram-negative brethren.

Wednesday, June 26, 2013

FDA Approves Vibativ for Hospitalized Patients with Bacterial Pneumonia

We know that, Telavancin (trade name Vibativ) is a bactericidal lipoglycopeptide for use in MRSA or other Gram-positive infections. Telavancin is a semi-synthetic derivative of vancomycin. The FDA approved the drug in September 2009 for complicated skin and skin structure infections (cSSSI)...




Now U.S. Food and Drug Administration today expanded the approved use of the antibiotic Vibativ (telavancin) to treat patients with hospital-acquired and ventilator-associated bacterial pneumonia (HABP/VABP) caused by Staphylococcus aureus. Vibativ should be used for the treatment of HABP/VABP only when alternative treatments are not suitable...

Monday, January 16, 2017

Cempra Completes NDA Submissions for Solithromycin in the Treatment of Community-Acquired Bacterial Pneumonia

Cempra, Inc.  , a clinical-stage pharmaceutical company focused on developing antibiotics to meet critical medical needs in the treatment of bacterial infectious diseases, announced the completion of its rolling submission of the New Drug Applications (NDA) for solithromycin to the U.S. Food and Drug Administration (FDA) for the treatment of community-acquired bacterial pneumonia (CABP). Based on the Qualified Infectious Disease Product (QIDP) designation by the FDA of solithromycin, Cempra has Priority Review and has been granted Fast Track for both the oral capsule and intravenous formulations for the treatment of CABP, which could result in an FDA decision on solithromycin's NDA within eight months, or by the end of 2016, based on the Prescription Drug User Fee Act (PDUFA) performance goals.
Solithromycin.svg Solithromycin
"Completion of the rolling submission of our first NDAs during Cempra's ten year anniversary year represents a major milestone for the company and a significant step toward our goal of developing antibiotics to meet the critical medical needs of patients in the treatment of bacterial infectious diseases," stated Prabhavathi Fernandes, Ph.D., president and chief executive officer of Cempra. "We believe the intravenous and capsule formulations will provide dosing flexibility that could lead to fewer hospital admissions, earlier discharge if admitted, and increased treatment of CABP on an outpatient basis. We are confident we have a strong data package for solithromycin."
"The management of CABP remains a challenge to healthcare professionals and I firmly believe that solithromycin has the potential to be a significant part of the treatment of this life threatening illness, given its published clinical efficacy and potential for multiple formulations," stated Thomas M. File, M.D., principal investigator for solithromycin clinical trials, Northeast Ohio Medical University. "Solithromycin's potency, spectrum of activity and tolerability could help to offset the rising problem of bacterial resistance, and it is gratifying to note that patients could be closer to benefiting from this potential new treatment."
The FDA has a 60-day filing review period to determine whether the NDAs are complete and acceptable for filing, and to confirm that Priority Review has been granted. Cempra expects to communicate the agency's decision regarding acceptance of the NDAs and its PDUFA date when it is known. Cempra's submissions in the EU remain on track for completion by the end of June 2016.

About Solithromycin

Solithromycin is a highly potent next-generation macrolide, the first fluoroketolide, which has potent activity against most macrolide-resistant strains. In vitro and in vivo studies have shown potent activity against S. pneumoniae as well as an extended spectrum of activity against CA-MRSA, streptococci, Haemophilus, enterococci, Mycobacterium avium and in animal models of malaria. It is also active against atypical bacteria, such as legionella, chlamydia, mycoplasma and ureaplasma, and against gonococci and other organisms that cause genitourinary tract infections. It is 8-16 times more potent than azithromycin against many bacteria and is active against azithromycin-resistant strains. Solithromycin's activity against resistant strains is driven by its ability to interact with three sites on the bacterial ribosome, compared to one for current macrolides. The binding to bacterial ribosomes and interaction with three ribosomal sites is expected to limit the development of bacterial resistance to solithromycin.

Sunday, April 11, 2010

Minocycline - Effective defense against HIV ?

We know that Minocycline hydrochloride, also known as minocycline (structure), is a broad spectrum tetracycline antibiotic, and has a broader spectrum than the other members of the group. It is a bacteriostatic antibiotic. It is primarily used to treat acne and other skin infections as well as lyme disease. It may be used to treat certain strains of MRSA infection and disease caused by drug resistant Acinetobacter. Its also used in DMARD (Disease-Modifying Anti-Rheumatic Drug) for RA. 

Now, Johns Hopkins scientists have found that this safe and inexpensive antibiotic (minocycline),   effectively targets infected immune cells in which HIV, the virus that causes AIDS, lies dormant and prevents them from reactivating and replicating. 

As per the claim by the researchers, minocycline, likely will improve on the current treatment regimens of HIV-infected patients if used in combination with a standard drug cocktail known as HAART (Highly Active Antiretroviral Therapy).  Though HART is really effective in keeping down active replication, minocycline is another arm of defense against the virus. 
Dr. Janice Clements lead researcher claims that,  unlike the drugs used in HAART which target the virus, minocycline homes in on, and adjusts T cells, major immune system agents and targets of HIV infection. and  minocycline reduces the ability of T cells to activate and proliferate, both steps crucial to HIV production and progression toward full blown AIDS. 

The idea for using minocycline as an adjunct to HAART resulted when the Hopkins team learned of research by others on rheumatoid arthritis patients showing the anti-inflammatory effects of minocycline on T cells. Interestingly the same researchers earlier found that  minocycline treatment had multiple beneficial effects in monkeys infected with SIV, the primate version of HIV. In monkeys treated with minocycline, the virus load in the cerebrospinal fluid, the viral RNA in the brain and the severity of central nervous system disease were significantly decreased. The drug was also shown to affect T cell activation and proliferation.  

The team used molecular markers to discover that minocycline very selectively interrupts certain specific signaling pathways critical for T cell activation. However, the antibiotic doesn't completely obliterate T cells or diminish their ability to respond to other infections or diseases, which is crucial for individuals with HIV. Researchers conclude that,  this new understanding about minocyline's effects on a T cell  might help to find even more drugs that target its signaling pathways.

At Johns Hopkins and elsewhere, scientists are now testing whether giving HIV patients minocycline benefits them, let us hope for the positive results....

Ref : http://www.usnews.com/science/articles/2010/03/26/existing-antibiotic-might-help-keep-wraps-on-aids-virus.html

Monday, September 24, 2012

New agents, Antimicrobial peptides, join the fight against antibiotic-resistant bacteria

Line Hein-Kristensen worked with a new class of antimicrobial agents, the so-called antimicrobial peptides. Antimicrobial peptides are part of the immune system in all life forms, including humans, and constitute the first line of defence against pathogenic organisms entering the body, e.g. via the food that we eat.

Antimicrobial peptides are special in that they act differently to conventional antibiotics and may thus be active against the very bacteria that are resistant to conventional antibiotics. These also include multiresistant bacteria – for example MRSA and ESBL against which we now have only a limited arsenal of treatment options.

Synthetic compound emulating nature.........................

Novel chemical methods have now made it possible to emulate the structure of natural antimicrobial peptides and thus also to develop many novel synthetic variants. Line Hein-Kristensen's PhD project focuses specifically on a series of synthetic compounds that have been designed, synthetised and characterised the Faculty of Health and Medical Sciences, University of Copenhagen.

The findings of her research show that the degree of antimicrobial activity against a range of food-borne and nosocomial (hospital-acquired) pathogenic bacteria depends on the chemical structure of custom-designed compounds. The research also shows that the synthetic antimicrobial peptides kill the bacteria by disrupting the bacterial cell membrane.


Tuesday, December 8, 2009

Discovery Of Novel New Class of Antimicrobial Agents... ......

We know that most of the bacteria are getting resistant to the present drugs and there is an urgent need to find a solution for resistant bacteria. Inn this global fight against resistant bacteria many companies are trying different ways and now Chaperone Technologies, Inc has come up with something innovative and interesting way, i.e., the company is trying to develop antimicrobial compounds that work by inhibiting bacterial hsp70 proteins (an entirely new mechanism of action).

Chaperone’s antimicrobial program focuses on development of peptide as well as small molecule hsp70 inhibitor drugs that block the effect of this important class of molecular “chaperones” whose role is to help mediate or respond to toxic misfolded proteins within bacteria. Inhibition of this critical bacterial protein has been proven to kill bacterial pathogens. Besides antimicrobials, the inhibition of hsp70 molecular chaperone proteins present in other cell-types has a range of therapeutic applications that are being investigated by the company.

Using sophisticated computerized molecular modeling techniques, proprietary high-throughput screening tools developed by Chaperone and other approaches, the company has significantly expanded its library of novel hsp70 inhibitor compounds including CHP-267 and CHP-281, just two of the many promising drug candidates from this highly promising family of small molecule inhibitors discovered by the Company. Chaperone is looking at hsp70 inhibitors as stand alone antimicrobial agents as well as in combination with other antimicrobials (e.g., Finafloxacin.HCl : see the structure -which is under phase II clinical trials). The company recently received a US Patent covering a method of significantly amplifying the effectiveness of other antimicrobials by combining their use with that of an hsp70 inhibitor. Combining a bacterial hsp70 inhibitor with another antimicrobial yields increased bacterial killing of clinically important pathogens and the potential for combination therapy.

Chaperone’s drug candidates have been proven effective against dangerous bacteria such as MRSA, acinetobacter, and vancomycin resistant enterococci. When combined with other antibiotics, Chaperone’s compounds stimulate powerful antibiotic synergy, providing superior efficacy even while using significantly lower doses of the combined agents.

Source : http://www.biospace.com/news_story.aspx?NewsEntityId=118501