Showing posts with label neural stem cells. Show all posts
Showing posts with label neural stem cells. Show all posts

Tuesday, June 2, 2015

RNA molecule can be manipulated to generate more neurons from neural stem cells

A research team at UC San Francisco has discovered an RNA molecule called Pnky that can be manipulated to increase the production of neurons from neural stem cells.

The research, led by neurosurgeon Daniel A. Lim, MD, PhD, and published on March 19, 2015 in Cell Stem Cell, has possible applications in regenerative medicine, including treatments of such disorders as Alzheimer's disease, Parkinson's disease and traumatic brain injury, and in cancer treatment.

Pnky is one of a number of newly discovered long noncoding RNAs (lncRNAs), which are stretches of 200 or more nucleotides in the human genome that do not code for proteins, yet seem to have a biological function.

The name, pronounced "Pinky," was inspired by the popular American cartoon series Pinky and the Brain. "Pnky is encoded near a gene called 'Brain,' so it sort of suggested itself to the students in my laboratory," said Lim. Pnky also appears only to be found in the brain, he noted.

Co-first authors Alex Ramos, PhD, and Rebecca Andersen, who are students in Lim's laboratory, first studied Pnky in neural stem cells found in mouse brains, and also identified the molecule in neural stem cells of the developing human brain. They found that when Pnky was removed from stem cells in a process called knockdown, neuron production increased three to four times.

"It is remarkable that when you take Pnky away, the stem cells produce many more neurons," said Lim, an assistant professor of neurological surgery and director of restorative surgery at UCSF. "These findings suggest that Pnky, and perhaps lncRNAs in general, could eventually have important applications in regenerative medicine and cancer treatment."