Showing posts with label Acetaminophen. Show all posts
Showing posts with label Acetaminophen. Show all posts

Tuesday, November 26, 2013

MNK-795 for acute pain management: an interview with Dr Lynn Webster

MNK-795 is an investigational, extended-release, oral formulation of oxycodone  (left) and acetaminophen (right) that has been studied for the management of moderate to severe acute pain where the use of an opioid analgesic is appropriate. 

MNK-795 is a product in development that is intended to be used for acute pain. It has some unique properties. First, it is an extended release formulation, meaning that it’s going to last more than three to four hours. It was studied to be dosed once every 12 hours, and that is unique for an acute pain formulation.

Secondly, it has abuse deterrent properties which mean that the new design and technology within this formulation may prevent people who try to manipulate, alter or convert the extended release into an immediate release in order to achieve a greater high.

Research has found that when the formulation is manipulated, when it’s crushed in some way or ground up, it actually delays the onset of some of its properties, the liking properties. So rather than causing more liking, more of a high, it actually causes less of a liking and less of a high when it’s manipulated.

This is the first time I’m aware that any technology has delayed and lessened the liking once it’s manipulated. I must, however, stress that at present these are only research results and we cannot yet confirm how MNK-795 will perform in the real world.

Monday, July 29, 2013

Scientists set out to develop safer versions of acetaminophen

Acetaminophen (ApAP) is an electron donor capable of reducing radicals generated by redox cycling of hemeproteins. It acts on the prostaglandin H synthases (cyclooxygenases; COXs) to reduce the protoporphyrin radical cation in the peroxidase site of the enzyme, thus preventing the intramolecular electron transfer that generates the Tyr385 radical required for abstraction of a hydrogen from arachidonic acid to initiate prostaglandin synthesis. Unrelated to this pharmacological action, metabolism of ApAP by CYPs yields an iminoquinone electrophile that is responsible for the hepatotoxicity, which results from high doses of the drug. Researchers synthesized novel heterocyclic phenols predicted to be electron donors. Two of these inhibited the oxygenation of arachidonic acid by PGHS-1 and myoglobin and also were shown to be more metabolically stable and exhibited less direct cytotoxicity than acetaminophen. They are leading candidates for studies to determine whether they are free of the metabolism-based hepatotoxicity produced by acetaminophen.....