Friday, December 27, 2013

Research: New drugs show ability to rapidly shrink melanoma tumors

Melanoma is the deadliest form of skin cancer, killing more than 8,000 in the U.S. each year. Approximately 40 percent of advanced melanoma tumors are driven to grow by the presence of mutations in a gene known as the BRAF gene. And although new drugs called BRAF inhibitors have shown an ability to rapidly shrink melanoma tumors, BRAF-mutated tumors often resist early treatment and only partially respond to BRAF inhibitors, which leaves behind cancer cells that can eventually grow into new tumors.

Today, two studies by researchers from UCLA's Jonsson Comprehensive Cancer Center were published online in the journal Cancer Discovery that provide critical insights into two important ways that tumors resist BRAF inhibitors. The researchers found the key cell-signaling pathways used by BRAF-mutant melanoma to learn how to become resistant to inhibitor drugs, and how the limited focus of BRAF inhibitors allows melanoma cells to evolve and become drug-resistant. The studies will appear later in the journal's print edition.

Led by Dr. Roger Lo, a member of the Jonsson Cancer Center and associate professor and director of the melanoma clinic in dermatology, the studies utilized patients' biopsy samples to give researchers powerful information that can be translated directly into the clinic. Specifically, the findings should help oncologists make better use of BRAF inhibitor drugs in combination with other drugs for melanoma patients.

In the first study, Lo and colleagues discovered how tumor cells escaped the effects of BRAF inhibitors by tracking the outgrowth of melanoma cells that had learned from different cell-signaling pathways how to become BRAF inhibitor-resistant. This work, based on an analysis of 100 biopsies from patients who had been treated with BRAF inhibitors, revealed that BRAF inhibitor-resistant tumors use a variety of different signaling routes to learn resistance and that people can have more than one resistance route. Clinical trials have rarely studied these phenomena at the molecular level, which Lo said provides a much more robust view of the scale and scope of the problem.



No comments: