Monday, June 29, 2015

Novel molecule inhibits cancer-causing transcription factors

Figure US08748618-20140610-C00108

A novel molecule designed by scientists at the University of Massachusetts Medical School and the University of Virginia inhibits progression of a hard-to-treat form of recurring acute myeloid leukemia (AML) in patient tissue. The small molecule is one of the first designed to specifically target a cancer-causing transcription factor. Previously thought to be an undruggable target, this strategy may be used to design other novel molecules that can specifically inhibit cancer-causing transcription factors. Details of the work were published in Science.

Transcription factors are single- or multi-protein complexes that regulate transcription of DNA into messenger RNA and gene expression by binding to regions on the genome next to a gene. Mutations in transcription factors can result in altered gene expression programs that give way to new, cancer-causing functions. Although these aberrant transcription factors are promising targets for new therapeutics, the complexity of interrupting very specific protein-to-protein interactions has made it difficult to find small molecules or design drugs that treat these cancers.

"When we look at inhibitors, they usually target an enzyme or receptor. There aren't a lot of good examples of transcription factor inhibitors in clinical trials," said Lucio H. Castilla, PhD, associate professor of molecular, cell and cancer biology and co-leader of the study. "Here, we've used our extensive knowledge of a mutant transcription factor found in a subset for acute myeloid leukemia patients to design a molecule that can specifically sequester only the oncogenic mutant. This leaves the normal transcription factor to bind to the DNA and restore gene expression.".......

Ref :

No comments: