Saturday, May 31, 2014

Combination of metformin and rapamycin shows potential in treating aging and related diseases

A proven approach to slow the aging process is dietary restriction, but new research in the Linus Pauling Institute at Oregon State University helps explain the action of a drug that appears to mimic that process - rapamycin.

Rapamycin, an antibiotic and immunosuppressant approved for use about 15 years ago, has drawn extensive interest for its apparent ability - at least in laboratory animal tests - to emulate the ability of dietary restriction in helping animals to live both longer and healthier.

However, this medication has some drawbacks, including an increase in insulin resistance that could set the stage for diabetes. The new findings, published in the Journals of Gerontology: Biological Sciences, help to explain why that happens, and what could be done to address it.
They suggest that a combination of rapamycin and another drug to offset that increase in insulin resistance might provide the benefits of this medication without the unwanted side effect.

"This could be an important advance if it helps us find a way to gain the apparent benefits of rapamycin without increasing insulin resistance," said Viviana Perez, an assistant professor in the Department of Biochemistry and Biophysics in the OSU College of Science.

"It could provide a way not only to increase lifespan but to address some age-related diseases and improve general health," Perez said. "We might find a way for people not only to live longer, but to live better and with a higher quality of life."

Age-related diseases include many of the degenerative diseases that affect billions of people around the world and are among the leading causes of death: cardiovascular disease, diabetes, Alzheimer's disease and cancer.

Friday, May 30, 2014

Study provides new insight into the prevalence of obesity

Study provides new insight into the prevalence of obesity

Isis Pharmaceuticals starts Phase 1 clinical study of ISIS-PKKRx to treat patients with HAE

Isis Pharmaceuticals, Inc. (NASDAQ: ISIS) announced  that it initiated a Phase 1 clinical study of ISIS-PKKRx.  ISIS-PKKRx is an antisense drug in development to treat patients with hereditary angioedemia (HAE).  HAE is a rare genetic disease that is characterized by rapid and painful attacks of inflammation in the hands, feet, limbs, face, abdomen, larynx and trachea.  HAE affects approximately 20,000 patients in the United States and Europe and can be fatal if swelling occurs in the larynx.  ISIS-PKKRx is designed to alter the course of HAE and therefore has the potential to be best-in-class for the treatment of HAE.  

Thursday, May 29, 2014

AbbVie receives HUMIRA orphan drug designation from FDA for treatment of non-infectious uveitis

AbbVie (NYSE: ABBV) announced that the U.S. Food and Drug Administration (FDA) has granted HUMIRA® (adalimumab) orphan drug designation for the treatment of non-infectious intermediate, posterior, or pan-uveitis, or chronic non-infectious anterior uveitis, a group of rare but serious inflammatory diseases of the eye. AbbVie is investigating the efficacy and safety of HUMIRA for the treatment of non-infectious uveitis, and the clinical program is in Phase III development. HUMIRA is not currently approved to treat any form of uveitis.

Uveitis is a general term that encompasses several inflammatory eye diseases. The associated inflammation causes damage of eye tissue leading to reduced vision and/or vision loss. While the exact cause of uveitis is unknown, this condition can be caused by an infection, autoimmune disease, medication, surgery or trauma to the eye. Symptoms of uveitis may include vision loss, blurred vision, eye pain and redness, as well as sensitivity to light. It is estimated that uveitis accounts for 10 to 15 percent of all cases of total blindness in the U.S.

Wednesday, May 28, 2014

Study: RNAi silencing strategy blocks production of mutant huntingtin protein


In continuation of my update on RNAi

A targeted gene silencing strategy blocks production of the dysfunctional huntingtin (Htt) protein, the cause of Huntington's disease, a fatal, inherited neurodegenerative disorder. The effectiveness of this RNA interference (RNAi) approach in reducing levels of mutant Htt protein and disease symptoms in a mouse model of the disease is described in Human Gene Therapy, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is available free on the Human Gene Therapy website.
Lisa Stanek and coauthors from Genzyme (Framingham, MA) used an adeno-associated viral (AAV) vector to deliver a targeted nucleic acid sequence called a small interfering RNA (siRNA) into the cells of affected mice. The siRNA selectively binds to the mutated gene, blocking disease-causing Htt production. The authors present data demonstrating the ability to deliver the therapeutic RNAi into the cells, reduce mutant Htt levels, and impact behavioral deficits in the mice without causing any noticeable neurotoxicity, in their article "Silencing Mutant Huntingtin by Adeno-Associated Virus-Mediated RNA Interference Ameliorates Disease Manifestations in the YAC128 Mouse Model of Huntington's Disease."

"The Genzyme group uses state-of-the-art delivery technology and a gene silencing approach to generate very promising preclinical data for Huntington's disease," says James M. Wilson, MD, PhD, Editor-in-Chief of Human Gene Therapy, and Director of the Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia.

Tuesday, May 27, 2014

New anticancer compound discovered

A team of research scientists from VTT Technical Research Centre of Finland, the University of Turku and the University of Eastern Finland has discovered a previously unknown Cent-1 molecule that kills cancer cells. Their research also shows that new cancer drug candidates can be identified faster and at lower cost by using computer-assisted and cell-based screening of compounds.

Ref: http://mct.aacrjournals.org/content/13/5/1054

Monday, May 26, 2014

Research explains action of drug that may slow aging, related disease

Rapamycin, an antibiotic and immunosuppressant approved for use about 15 years ago, has drawn extensive interest for its apparent ability at least in laboratory animal tests -- to emulate the ability of dietary restriction in helping animals to live both longer and healthier.

However, this medication has some drawbacks, including an increase in insulin resistance that could set the stage for diabetes. The new findings, published in the Journals of Gerontology: Biological Sciences, help to explain why that happens, and what could be done to address it. They suggest that a combination of rapamycin and another drug to offset that increase in insulin resistance might provide the benefits of this medication without the unwanted side effect.

"This could be an important advance if it helps us find a way to gain the apparent benefits of rapamycin without increasing insulin resistance," said Viviana Perez, an assistant professor in the Department of Biochemistry and Biophysics in the OSU College of Science.

"It could provide a way not only to increase lifespan but to address some age-related diseases and improve general health," Perez said. "We might find a way for people not only to live longer, but to live better and with a higher quality of life."

Age-related diseases include many of the degenerative diseases that affect billions of people around the world and are among the leading causes of death: cardiovascular disease, diabetes, Alzheimer's disease and cancer. Laboratory mice that have received rapamycin have reduced the age-dependent decline in spontaneous activity, demonstrated more fitness, improved cognition and cardiovascular health, had less cancer and lived substantially longer than mice fed a normal diet.

Rapamycin, first discovered from the soils of Easter Island, or Rapa Nui in the South Pacific Ocean, is primarily used as an immunosuppressant to prevent rejection of organs and tissues. In recent years it was also observed that it can function as a metabolic "signaler" that inhibits a biological pathway found in almost all higher life forms --     the  ability to  sense when  food  has
been eaten, energy is available and it's okay for cell proliferation, protein synthesis and growth to proceed.

Called mTOR in mammals, for the term "mammalian target of rapamycin," this pathway has a critical evolutionary value -- it helps an organism avoid too much cellular expansion and growth when energy supplies are insufficient. That helps explain why some form of the pathway has been conserved across such a multitude of species, from yeast to fish to humans.

"Dietary restriction is one of the few interventions that inhibits this mTOR pathway," Perez said. "And a restricted diet in laboratory animals has been shown to increase their lifespan about 25-30 percent. Human groups who eat fewer calories, such as some Asian cultures, also live longer."
Aside from a food intake in laboratory mice that's about 40 percent fewer calories than normal, however, it's been found that another way to activate this pathway is with rapamycin, which appears to have a significant impact even when used late in life. Some human clinical trials are already underway exploring this potential.

A big drawback to long-term use of rapamycin, however, is the increase in insulin resistance, observed in both humans and laboratory animals. The new research identified why that is happening. It found that both dietary restriction and rapamycin inhibited lipid synthesis, but only dietary restriction increased the oxidation of those lipids in order to produce energy.

Rapamycin, by contrast, allowed a buildup of fatty acids and eventually an increase in insulin resistance, which in humans can lead to diabetes. However, the drug metformin can address that concern, and is already given to some diabetic patients to increase lipid oxidation. In lab tests, the combined use of rapamycin and metformin prevented the unwanted side effect.

"If proven true, then combined use of metformin and rapamycin for treating aging and age-associated diseases in humans may be possible," the researchers wrote in their conclusion.

This work was supported by the National Institutes of Health. Collaborators included researchers from Oklahoma University Health Science Center, the Oklahoma City VA Medical Center, University of Michigan-Flint, and South Texas Veterans Health Care System.

"There's still substantial work to do, and it may not be realistic to expect with humans what we have been able to accomplish with laboratory animals," Perez said. "People don't live in a cage and eat only the exact diet they are given. 

Nonetheless, the potential of this work is exciting."





























































Saturday, May 24, 2014

Compound reverses symptoms of Alzheimer's disease in mice

"It reversed learning and memory deficits and brain inflammation in mice that are genetically engineered to model Alzheimer's disease," Farr said. "Our current findings suggest that the compound, which is called antisense oligonucleotide (OL-1), is a potential treatment for Alzheimer's disease."

Farr cautioned that the experiment was conducted in a mouse model. Like any drug, before an antisense compound could be tested in human clinical trials, toxicity tests need to be completed.

Antisense is a strand of molecules that bind to messenger RNA, launching a cascade of cellular events that turns off a certain gene.

In this case, OL-1 blocks the translation of RNA, which triggers a process that keeps excess amyloid beta protein from being produced. The specific antisense significantly decreased the over expression of a substance called amyloid beta protein precursor, which normalized the amount of amyloid beta protein in the body. Excess amyloid beta protein is believed to be partially responsible for the formation of plaque in
the brain of patients who have Alzheimer's disease.

Scientists tested OL-1 in a type of mouse that overexpresses a mutant form of the human amyloid beta precursor gene. Previously they had tested the substance in a mouse model that has a natural mutation causing it to overproduce mouse amyloid beta. Like people who have Alzheimer's disease, both types of mice have age-related impairments in learning and memory, elevated levels of amyloid beta protein that stay in the brain and increased inflammation and oxidative damage to the hippocampus  the part of the brain responsible for learning and memory.

"To be effective in humans, OL-1 would need to be effective at suppressing production of human amyloid beta protein," Farr said.

Scientists compared the mice that were genetically engineered to overproduce human amyloid beta protein with a wild strain, which served as the control. All of the wild strain received random antisense, while about half of the genetically engineered mice received random antisense and half received OL-1. 

The mice were given a series of tests designed to measure memory, learning and appropriate behavior, such as going through a maze, exploring an unfamiliar location and recognizing an object. 

Scientists found that learning and memory improved in the genetically engineered mice that received OL-1 compared to the genetically engineered mice that received random antisense. Learning and memory were the same among genetically engineered mice that received OL-1 and wild mice that received random antisense.

They also tested the effect of administering the drug through the central nervous system, so it crossed the blood brain barrier to enter the brain directly, and of giving it through a vein in the tail, so it circulated through the bloodstream in the body. They found where the drug was injected had little effect on learning and memory.

Ref http://iospress.metapress.com/content/px72758w0158103u/?issue=4&genre=article&spage=1005&issn=1387-2877&volume=40




































Wednesday, May 21, 2014

FDA Approves Purixan (mercaptopurine) Oral Suspension


U. S. Food and Drug Administration approved an oral suspension of mercaptopurine (Purixan, NOVA Laboratories Limited). Mercaptopurine is a 20 mg/ml oral suspension. Purixan is indicated for the treatment of patients with acute lymphoblastic leukemia (ALL) as part of a combination regimen..


Tuesday, May 13, 2014

Scientists have found a potential cure for Ebola (Science Alert)

Ebola and related viruses cause hemorrhagic fever and death through organ failure, and can have a mortality rate of up to 90%, among the highest of any known human disease.  But researchers working in a high-contaminant biological laboratory maintained by USAMRIID at Fort Detrick in Maryland, US, may have found a potential cure.



The scientists have discovered a molecule, named BCX4430, (see structure) which looks a lot like the "A" that makes up DNA: adenosine. Adenosine is one of four base pairs in DNA, and is also used in the genomes of RNA-based viruses,  such as Ebola. But because BCX4430 looks so much like Adenosine, the scientists found that members of the Filoviridae virus family, such as Ebola, can accidentally use it as a building block when trying to grow inside our cells
  
In the study, the team gave Macaque monkeys effected with the deadly Marburg virus (a close relative to Ebola) two doses for BCX4430 a day  for 14 days.

The monkeys who weren't given any of the treatment were dead by day 12, whereas all but one monkey who was given BCX4430 survived, even if they only received treatment 48 hours after they were infected.

Luckily, only virus cells appear to be tricked into using BCX4430, and human and monkey cells do just fine with the molecule around. 
In vitro experiments
also suggest that BCX4430 could potentially be used against a wide range of
viruses, including SARS, influenza, measles and dengue.

It's too early to get excited just yet, with no human trials yet conducted. But the newly discovered molecule holds the greatest potential we've ever seen for curing these terrifying diseases.

http://www.nature.com/nature/journal/vaop/ncurrent/fig_tab/nature13027_F1.html
















Monday, May 12, 2014

MSU research pushes promising molecule toward clinical trials for treatment of neurological disorders

Research at Michigan State University, published in the Journal of Biological Chemistry, shows that a small "molecular tweezer" keeps proteins from clumping, or aggregating, the first step of neurological disorders such as Parkinson's disease, Alzheimer's disease and Huntington's disease.

The results are pushing the promising molecule toward clinical trials and actually becoming a new drug, said Lisa Lapidus, MSU associate professor of physics and astronomy and co-author of the paper.

"By the time patients show symptoms and go to a doctor, aggregation already has a stronghold in their brains," she said. "In the lab, however, we can see the first steps, at the very place where the drugs could be the most effective. This could be a strong model for fighting Parkinson's and other diseases that involve neurotoxic aggregation."

Lapidus' lab uses lasers to study the speed of protein reconfiguration before aggregation, a technique Lapidus pioneered. Proteins are chains of amino acids that do most of the work in cells. Scientists understand protein structure, but they don't know how they are built - a process known as folding.

Lapidus' lab has shed light on the process by correlating the speed at which an unfolded protein changes shape, or reconfigures, with its tendency to clump or bind with other proteins. If reconfiguration is much faster or slower than the speed at which proteins bump into each other, aggregation is slow, but if reconfiguration is the same speed, aggregation is fast. 

Srabasti Acharya, lead author and doctoral candidate in Lapidus' lab, tested the molecule, CLR01, (see structure) which was patented jointly by researchers at the University of Duisburg-Essen (Germany) and UCLA. CLR01 binds to the protein and prevents aggregation by speeding up reconfiguration. It's like a claw that attaches to the amino acid lysine, which is part of the protein.

This work was preceded by Lapidus' research involving the spice curcumin. While the spice molecules put the researchers on a solid path, the molecules weren't viable drug candidates because they cannot cross the blood-brain barrier, or BBB, the filter that controls what chemicals reach the brain.


Friday, May 9, 2014

MSU research pushes promising molecule toward clinical trials for treatment of neurological disorders

Research at Michigan State University, published in the Journal of Biological Chemistry, shows that a small "molecular tweezer" keeps proteins from clumping, or aggregating, the first step of neurological disorders such as Parkinson's disease, Alzheimer's disease and Huntington's disease.

The results are pushing the promising molecule toward clinical trials and actually becoming a new drug, said Lisa Lapidus, MSU associate professor of physics and astronomy and co-author of the paper.

"By the time patients show symptoms and go to a doctor, aggregation already has a stronghold in their brains," she said. "In the lab, however, we can see the first steps, at the very place where the drugs could be the most effective. This could be a strong model for fighting Parkinson's and other diseases that involve neurotoxic aggregation."

Lapidus' lab uses lasers to study the speed of protein reconfiguration before aggregation, a technique Lapidus pioneered. Proteins are chains of amino acids that do most of the work in cells. Scientists understand protein structure, but they don't know how they are built - a process known as folding.

Lapidus' lab has shed light on the process by correlating the speed at which an unfolded protein changes shape, or reconfigures, with its tendency to clump or bind with other proteins. If reconfiguration is much faster or slower than the speed at which proteins bump into each other, aggregation is slow, but if reconfiguration is the same speed, aggregation is fast. 

Srabasti Acharya, lead author and doctoral candidate in Lapidus' lab, tested the molecule, CLR01, (see structure) which was patented jointly by researchers at the University of Duisburg-Essen (Germany) and UCLA. CLR01 binds to the protein and prevents aggregation by speeding up reconfiguration. It's like a claw that attaches to the amino acid lysine, which is part of the protein.

This work was preceded by Lapidus' research involving the spice curcumin. While the spice molecules put the researchers on a solid path, the molecules weren't viable drug candidates because they cannot cross the blood-brain barrier, or BBB, the filter that controls what chemicals reach the brain.


Thursday, May 8, 2014

MSU research pushes promising molecule toward clinical trials for treatment of neurological disorders

Research at Michigan State University, published in the Journal of Biological Chemistry, shows that a small "molecular tweezer" keeps proteins from clumping, or aggregating, the first step of neurological disorders such as Parkinson's disease, Alzheimer's disease and Huntington's disease.

The results are pushing the promising molecule toward clinical trials and actually becoming a new drug, said Lisa Lapidus, MSU associate professor of physics and astronomy and co-author of the paper.

"By the time patients show symptoms and go to a doctor, aggregation already has a stronghold in their brains," she said. "In the lab, however, we can see the first steps, at the very place where the drugs could be the most effective. This could be a strong model for fighting Parkinson's and other diseases that involve neurotoxic aggregation."

Lapidus' lab uses lasers to study the speed of protein reconfiguration before aggregation, a technique Lapidus pioneered. Proteins are chains of amino acids that do most of the work in cells. Scientists understand protein structure, but they don't know how they are built - a process known as folding.

Lapidus' lab has shed light on the process by correlating the speed at which an unfolded protein changes shape, or reconfigures, with its tendency to clump or bind with other proteins. If reconfiguration is much faster or slower than the speed at which proteins bump into each other, aggregation is slow, but if reconfiguration is the same speed, aggregation is fast. 

Srabasti Acharya, lead author and doctoral candidate in Lapidus' lab, tested the molecule, CLR01, (see structure) which was patented jointly by researchers at the University of Duisburg-Essen (Germany) and UCLA. CLR01 binds to the protein and prevents aggregation by speeding up reconfiguration. It's like a claw that attaches to the amino acid lysine, which is part of the protein.

This work was preceded by Lapidus' research involving the spice curcumin. While the spice molecules put the researchers on a solid path, the molecules weren't viable drug candidates because they cannot cross the blood-brain barrier, or BBB, the filter that controls what chemicals reach the brain.


Wednesday, May 7, 2014

MSU research pushes promising molecule toward clinical trials for treatment of neurological disorders

Research at Michigan State University, published in the Journal of Biological Chemistry, shows that a small "molecular tweezer" keeps proteins from clumping, or aggregating, the first step of neurological disorders such as Parkinson's disease, Alzheimer's disease and Huntington's disease.

The results are pushing the promising molecule toward clinical trials and actually becoming a new drug, said Lisa Lapidus, MSU associate professor of physics and astronomy and co-author of the paper.

"By the time patients show symptoms and go to a doctor, aggregation already has a stronghold in their brains," she said. "In the lab, however, we can see the first steps, at the very place where the drugs could be the most effective. This could be a strong model for fighting Parkinson's and other diseases that involve neurotoxic aggregation."

Lapidus' lab uses lasers to study the speed of protein reconfiguration before aggregation, a technique Lapidus pioneered. Proteins are chains of amino acids that do most of the work in cells. Scientists understand protein structure, but they don't know how they are built - a process known as folding.

Lapidus' lab has shed light on the process by correlating the speed at which an unfolded protein changes shape, or reconfigures, with its tendency to clump or bind with other proteins. If reconfiguration is much faster or slower than the speed at which proteins bump into each other, aggregation is slow, but if reconfiguration is the same speed, aggregation is fast. 

Srabasti Acharya, lead author and doctoral candidate in Lapidus' lab, tested the molecule, CLR01, (see structure) which was patented jointly by researchers at the University of Duisburg-Essen (Germany) and UCLA. CLR01 binds to the protein and prevents aggregation by speeding up reconfiguration. It's like a claw that attaches to the amino acid lysine, which is part of the protein.

This work was preceded by Lapidus' research involving the spice curcumin. While the spice molecules put the researchers on a solid path, the molecules weren't viable drug candidates because they cannot cross the blood-brain barrier, or BBB, the filter that controls what chemicals reach the brain.


Tuesday, May 6, 2014

MSU research pushes promising molecule toward clinical trials for treatment of neurological disorders

Research at Michigan State University, published in the Journal of Biological Chemistry, shows that a small "molecular tweezer" keeps proteins from clumping, or aggregating, the first step of neurological disorders such as Parkinson's disease, Alzheimer's disease and Huntington's disease.

The results are pushing the promising molecule toward clinical trials and actually becoming a new drug, said Lisa Lapidus, MSU associate professor of physics and astronomy and co-author of the paper.

"By the time patients show symptoms and go to a doctor, aggregation already has a stronghold in their brains," she said. "In the lab, however, we can see the first steps, at the very place where the drugs could be the most effective. This could be a strong model for fighting Parkinson's and other diseases that involve neurotoxic aggregation."

Lapidus' lab uses lasers to study the speed of protein reconfiguration before aggregation, a technique Lapidus pioneered. Proteins are chains of amino acids that do most of the work in cells. Scientists understand protein structure, but they don't know how they are built - a process known as folding.

Lapidus' lab has shed light on the process by correlating the speed at which an unfolded protein changes shape, or reconfigures, with its tendency to clump or bind with other proteins. If reconfiguration is much faster or slower than the speed at which proteins bump into each other, aggregation is slow, but if reconfiguration is the same speed, aggregation is fast. 

Srabasti Acharya, lead author and doctoral candidate in Lapidus' lab, tested the molecule, CLR01, (see structure) which was patented jointly by researchers at the University of Duisburg-Essen (Germany) and UCLA. CLR01 binds to the protein and prevents aggregation by speeding up reconfiguration. It's like a claw that attaches to the amino acid lysine, which is part of the protein.

This work was preceded by Lapidus' research involving the spice curcumin. While the spice molecules put the researchers on a solid path, the molecules weren't viable drug candidates because they cannot cross the blood-brain barrier, or BBB, the filter that controls what chemicals reach the brain.


Monday, May 5, 2014

MSU research pushes promising molecule toward clinical trials for treatment of neurological disorders

Research at Michigan State University, published in the Journal of Biological Chemistry, shows that a small "molecular tweezer" keeps proteins from clumping, or aggregating, the first step of neurological disorders such as Parkinson's disease, Alzheimer's disease and Huntington's disease.

The results are pushing the promising molecule toward clinical trials and actually becoming a new drug, said Lisa Lapidus, MSU associate professor of physics and astronomy and co-author of the paper.

"By the time patients show symptoms and go to a doctor, aggregation already has a stronghold in their brains," she said. "In the lab, however, we can see the first steps, at the very place where the drugs could be the most effective. This could be a strong model for fighting Parkinson's and other diseases that involve neurotoxic aggregation."

Lapidus' lab uses lasers to study the speed of protein reconfiguration before aggregation, a technique Lapidus pioneered. Proteins are chains of amino acids that do most of the work in cells. Scientists understand protein structure, but they don't know how they are built - a process known as folding.

Lapidus' lab has shed light on the process by correlating the speed at which an unfolded protein changes shape, or reconfigures, with its tendency to clump or bind with other proteins. If reconfiguration is much faster or slower than the speed at which proteins bump into each other, aggregation is slow, but if reconfiguration is the same speed, aggregation is fast. 

Srabasti Acharya, lead author and doctoral candidate in Lapidus' lab, tested the molecule, CLR01, (see structure) which was patented jointly by researchers at the University of Duisburg-Essen (Germany) and UCLA. CLR01 binds to the protein and prevents aggregation by speeding up reconfiguration. It's like a claw that attaches to the amino acid lysine, which is part of the protein.

This work was preceded by Lapidus' research involving the spice curcumin. While the spice molecules put the researchers on a solid path, the molecules weren't viable drug candidates because they cannot cross the blood-brain barrier, or BBB, the filter that controls what chemicals reach the brain.


Thursday, May 1, 2014

Cancer drugs block dementia-linked brain inflammation, study finds

A class of drugs developed to treat immune-related conditions and cancer -- including one currently in clinical trials for glioblastoma and other tumors -- eliminates neural inflammation associated with dementia-linked diseases and brain injuries, according to UC Irvine researchers.

In their study, assistant professor of neurobiology & behavior Kim Green and colleagues discovered that the drugs, which can be delivered orally, eradicated microglia, the primary immune cells of the brain. These cells exacerbate many neural diseases, including Alzheimer's and Parkinson's, as well as brain injury.
"Because microglia are implicated in most brain disorders, we feel we've found a novel and broadly applicable therapeutic approach," Green said. "This study presents a new way to not just modulate inflammation in the brain but eliminate it completely, making this a breakthrough option for a range of neuroinflammatory diseases."
The researchers focused on the impact of a class of drugs called CSF1R inhibitors on microglial function. In mouse models, they learned that inhibition led to the removal of virtually all microglia from the adult central nervous system with no ill effects or deficits in behavior or cognition. Because these cells contribute to most brain diseases -- and can harm or kill neurons -- the ability to eradicate them is a powerful advance in the treatment of neuroinflammation-linked disorders.
Green said his group tested several selective CSF1R inhibitors that are under investigation as cancer treatments and immune system modulators. Of these compounds, they found the most effective to be a drug called PLX3397, created by Plexxikon Inc., a Berkeley, Calif.-based biotechnology company and member of the Daiichi Sankyo Group. PLX3397 is currently being evaluated in phase one and two clinical trials for multiple cancers, including glioblastoma, melanoma, breast cancer and leukemia.
Crucially, microglial elimination lasted only as long as treatment continued. Withdrawal of inhibitors produced a rapid repopulation of cells that then grew into new microglia, said Green, who's a member of UC Irvine's Institute for Memory Impairments and Neurological Disorders.

Ref : http://www.cell.com/neuron/abstract/S0896-6273(14)00171-8