Thursday, April 4, 2013

New class of anti-malarial compounds discovered

A group of researchers from 16 institutions around the world has identified a new class of anti-malarial compounds that target multiple stages of the malaria parasite's life cycle  These compounds could potentially be developed into drugs that treat and prevent malaria infection. Known as 4-(1H)-quinolone-3-diarylethers, the candidate anti-malarials are derived from a compound called endochin that effectively treats malaria in birds. When tested in the laboratory and in mice, the compounds demonstrated strong activity againstPlasmodium falciparum and Plasmodium vivax, the two parasites that cause most human cases of malaria. Transmitted via a mosquito bite, malaria causes cycles of chills, fever and fatigue, and is responsible for roughly 660,000 deaths per year, according to the World Health Organization. New drugs are needed because of the emergence of malaria-inducing parasites that are resistant to existing medications.

Of the 4-(1H)-quinolones, the researchers focused their efforts on the compound ELQ-300, which inhibited malaria parasites during the erythrocytic stage, when they cause symptoms in humans; as well as during the gametocyte and developmental stages in the mosquito, when the parasites are transmitted. In addition, when ELQ-300 was administered to mice infected with the Plasmodium species that cause malaria in mice, the infection was cured. The study results also suggested that the compound could be adapted into a once-daily dose in humans and would be slow to engender resistance. The researchers are currently proceeding with preclinical development of ELQ-300 (see the structure below).

Ref :1.

New class of anti-malarial compounds discovered

No comments: